Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T00:52:07.106Z Has data issue: false hasContentIssue false

Electronic Properties of Microcrystalline Silicon investigated by Photoluminescence Spectroscopy on Films and Devices

Published online by Cambridge University Press:  01 February 2011

R. Carius
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich GmbH D-52428 Jülich
T. Merdzhanova
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich GmbH D-52428 Jülich
F. Finger
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich GmbH D-52428 Jülich
Get access

Abstract

Photoluminescence spectroscopy has been applied to investigate localized states in microcrystal-line silicon (μc-Si:H) films and to address the problem of the changes of the electronic properties of this material upon changes of the hydrogen dilution during film growth. By a comparison of photoluminescence and Raman spectra on device grade sample series prepared at different silane concentration in hydrogen (SC) by PE-CVD and HW-CVD a correlation between the micro-structure and the photoluminescence energy is found. It is proposed that the density of band tail states is reduced with increasing SC leading to the increase of the PL energy as well as to the increase of Voc of solar cells. The reason for the tails and their reduction is not clear but strain might play a crucial role and the amorphous hydrogenated phase might be effective for strain reduction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vetterl, O., Carius, R., Houben, L., Scholten, C., Luysberg, M., Lambertz, A., Finger, F., Wagner, H., Mat. Res. Soc. Symp. Proc.. 609 (2000) A15.2.Google Scholar
2. Klein, S., Finger, F., Carius, R., Rech, B., Houben, L., Luysberg, M., Stutzmann, M., Mat. Res. Soc. Symp. Proc.. 715 (2002) A26.3 Google Scholar
3. Bhat, P. K., Diprose, G., Searle, T. M., Austin, I. G., LeComber, P. G., Spear, W. E., Physica 117&118B, 917 (1983); P. K. Bhat, I. G. Austin, T. M. Searle, J. Non-Crystal. Solids, 59&60, 381 (1983)Google Scholar
4. Carius, R., Mat. Res. Soc. Meeting, San Francisco, (2000) unpublishedGoogle Scholar
5. Yue, Gouzhen, Han, Daxing, McNeil, L. E., Wang, Qi, J. Appl. Phys. 88, No. 8, 4904 2000 Google Scholar
6. Carius, R., Finger, F., Backhausen, U., Luysberg, M., Hapke, P., Otte, M. and Overhof, H., Mat. Res. Soc. Symp. Proc.. 467 (1997) 283.Google Scholar
7. Kalkan, A. Kaan, Fonasch, S. J., Cheng, Shang-Cong, Appl. Phys. Lett. 77, No. 1, 55 2000 Google Scholar
8. Carius, R., Merdzhanova, T., Finger, F., Klein, S., Vetterl, O., Journal of Materials Science -Materials in Electronics, Kluwer Academic Publishers, 2003, in printGoogle Scholar
9. Finger, F., Klein, S., Carius, R., Dylla, T., Vetterl, O., Neto, A.L. Baia, ibid.Google Scholar
10. Brammer, T., Bunte, E., Stiebig, H., Finger, F., Wagner, H., Proceedings of the 16th E-PVSEC, Glasgow, May 2000, edited by Scher, H., McNelis, B., Palz, W., Ossenbrink, H.A., Helm, P., (James&James, London, 2000) p. 545 Google Scholar