Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T09:29:41.518Z Has data issue: false hasContentIssue false

Electronic Structure and Atomic Configuration of Extended Defects in Metals by First-Principles and Semiempirical TB-LMTO Methods

Published online by Cambridge University Press:  10 February 2011

M. Šob
Affiliation:
Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, CZ-61662 Brno, Czech Republic, mojmir@ipm.cz Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut St., Philadelphia, PA 19104–6272, U. S. A., vitek@soll.lrsm.upenn.edu
I. Turek
Affiliation:
Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, CZ-61662 Brno, Czech Republic, mojmir@ipm.cz
V. Vitek
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut St., Philadelphia, PA 19104–6272, U. S. A., vitek@soll.lrsm.upenn.edu
Get access

Abstract

We present two tight-binding linear muffin-tin orbitals (TB-LMTO) techniques for electronic structure calculations of extended defects (such as grain boundaries, interphase interfaces, surface layers etc.) in metals. The first is based on the first-principles self-consistent surface Green's function approach within the atomic-sphere approximation (ASA) utilizing two-dimensional periodicity in the layers parallel to the interface. In the second approach the Hamiltonian is constructed within the TB-LMTO-ASA as well, but semiempirical terms are employed to characterize the repulsive part of the interaction and the effect of electrons in interstitial space. While the adjustable parameters have only been fitted to the properties of ideal ground state structure, the semiempirical approach describes correctly the structural energy differences, phonon frequencies etc. Two examples are presented: the electronic structure of the Σ = 5(210)/[001] tilt grain boundary in tungsten is determined and the sensitivity of 4d magnetic moments in thin films to local environment is discussed. A comparison of the semiempirical TB-LMTO-ASA with the first-principles full-potential LMTO results is performed along the trigonal deformation path connecting the bcc, simple cubic and fee structures and the applicability of the semiempirical approach for simulating atomic structure of extended defects is assessed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lafon, E. and Lin, C.C., Phys. Rev. 152, 597 (1966).Google Scholar
2. Harrison, W.A., Electronic Structure and the Properties of Solids (Dover Publications, New York, 1989).Google Scholar
3. Callaway, J., Quantum Theory of the Solid State (Academic Press, Boston, 1991).Google Scholar
4. Solid State Physics, vol. 35, edited by Ehrenreich, H., Seitz, F., and Turnbull, D., (Academic Press, New York, 1980).Google Scholar
5. Gonis, A., Green Functions for Ordered and Disordered Systems (North-Holland, Amsterdam, 1992).Google Scholar
6. Haydock, R. and Heine, V., Comments Cond. Mat. Phys. 18, 83 (1997).Google Scholar
7. Haydock, R., this Proceedings.Google Scholar
8. Bowler, D.R., Aoki, M., Goringe, C.M., Horsfield, A.P., and Pettifor, D.G., Modelling Simul. Mater. Sci. Eng. 5, 199 (1997).Google Scholar
9. Andersen, O.K. and Jepsen, O., Phys. Rev. Lett. 53, 2571 (1984).Google Scholar
10. Andersen, O.K., Jepsen, O., and Glötzel, D., in Highlights of Condensed Matter Theory, edited by Bassani, F., Fumi, F., and Tosi, M.P. (North-Holland, New York, 1985), p. 59.Google Scholar
11. Andersen, O.K., Pawlowska, Z., and Jepsen, O., Phys. Rev. B 34, 5253 (1986).Google Scholar
12. Andersen, O.K., Jepsen, O., and Sob, M., in Electronic Band Structure and Its Applications, edited by Yussouff, M. (Springer-Verlag, Berlin-Heidelberg, 1987), p. 1.Google Scholar
13. Zeiler, R., Dederichs, P.H., Újfalussy, B., Szunyogh, L., and Weinberger, P., Phys. Rev. B 52, 8807 (1995).Google Scholar
14. Andersen, O.K., Jepsen, O., and Krier, G., in Lectures on Methods of Electronic Structure Calculations, edited by Kumar, V., Andersen, O.K., and Mookerjee, A. (World Scientific, Singapore, 1994), p. 63.Google Scholar
15. Andersen, O.K., Krier, G., Tank, R.W., Arcangeli, C., Dasgupta, T., and Jepsen, O., this Proceedings.Google Scholar
16. Andersen, O.K., Solid State Commun. 13, 133 (1973).Google Scholar
17. Andersen, O.K., Phys. Rev. B 12, 3060 (1975).Google Scholar
18. Andersen, O.K., in The Electronic Structure of Complex Systems, edited by Phariseau, P. and Temmerman, W.M. (Plenum, New York, 1984) p. 11.Google Scholar
19. Skriver, H.L., The LMTO Method (Springer, Berlin, 1984).Google Scholar
20. Turek, I., Drchal, V., Kudrnovský, J., Sob, M., and Weinberger, P., Electronic Structure of Disordered Alloys, Surfaces and Interfaces (Kluwer Academic Publishers, Boston-London-Dordrecht, 1997).Google Scholar
21. Andersen, O.K., Postnikov, A.V., and Savrasov, S. Yu., in Applications of Multiple Scattering Theory to Materials Science, edited by Butler, W.H., Dederichs, P.H., Gonis, A., and Weaver, R.L. (Mater. Res. Soc. Symp. Proc. vol. 253, Pittsburgh, PA, 1992), p. 37.Google Scholar
22. Garcia-Moliner, F. and Velasco, V.R., Progr. Surf. Sci. 21, 93 (1986);Google Scholar
Theory of Single and Multiple Interfaces (World Scientific, Singapore-New Jersey-London-Hong Kong, 1992).Google Scholar
23. Wenzien, B., Kudrnovský, J., Drchal, V., and Sob, M., J. Phys.: Condens. Matter 1, 9893 (1989).Google Scholar
24. Kudrnovský, J., Turek, I., and Drchal, V., in Lectures on Methods of Electronic Structure Calculations, edited by Kumar, V., Andersen, O.K., and Mookerjee, A. (World Scientific, Singapore, 1994), p. 231.Google Scholar
25. Kudrnovský, J., Turek, I., Drchal, V., and Sob, M., in Stability of Materials, edited by Gonis, A., Turchi, P.E.A., and Kudrnovský, J. (Plenum Press, New York, 1996), p. 237.Google Scholar
26. Ackland, G. and Thetford, R., Phil. Mag. A 56, 15 (1987).Google Scholar
27. Crampin, S., Vvedensky, D.D., MacLaren, J.M., and Eberhart, M.E., Phys. Rev. B 40, 3413 (1989).Google Scholar
28. Freeman, A.J. and Wu, R., J. Magn. Magn. Mater. 100, 497 (1991).Google Scholar
29. Weinert, M. and Blügel, S., in Magnetic Multilayers, edited by Bennett, L.H. and Watson, R.E. (World Scientific, Singapore, 1994), p. 51.Google Scholar
30. Mulhollan, G.A., Fink, R.L., and Erskine, J.L., Phys. Rev. 44, 2393 (1991).Google Scholar
31. Liu, C. and Bader, S.D., Phys. Rev. B 44, 12062 (1991).Google Scholar
32. Turek, I., Kudrnovský, J., Šob, M., Drchal, V., and Weinberger, P., Phys. Rev. Lett. 74, 2551 (1995).Google Scholar
33. Blügel, S., Phys. Rev. B 51, 2025 (1995).Google Scholar
34. Andersen, O.K., Methfessel, M., Rodriguez, C.O., Blöchl, P., and Polatoglou, H.M., in Atomistic Simulations of Materials: Beyond Pair Potentials, edited by Vitek, V. and Srolovitz, D.J. (Plenum, New York-London, 1989), p. 1.Google Scholar
35. Tank, R.W., Arcangeli, C., Krier, G., Andersen, O.K., and Jepsen, O., in Properties of Complex Inorganic Solids, edited by Gonis, A., Meike, A., and Turchi, P.E.A. (Plenum, New York-London, 1997), p. 233.Google Scholar
36. Vitos, L., Kollár, J., and Skriver, H.L., Phys. Rev. B 55, 13521 (1997).Google Scholar
37. Foulkes, W.M.C. and Haydock, R., Phys. Rev. B 39, 12520 (1989).Google Scholar
38. Vitek, V., in Stability of Materials, edited by Gonis, A., Turchi, P.E.A., and Kudrnovský, J. (Plenum, New York, 1996), p. 53.Google Scholar
39. Horsfield, A.P., Bratkovsky, A.M., Fearn, M., Pettifor, D.G., and Aoki, M., Phys. Rev. B 53, 12964 (1996).Google Scholar
40. Šob, M., Vitek, V., and Oh, Y., in Computational Methods in Materials Science, edited by Mark, J.E., Glicksman, M.E., and Marsh, S.P. (Mater. Res. Soc. Symp. Proc. vol. 278, Pittsburgh, PA, 1992), p. 205.Google Scholar
41. Jacobsen, K.W., Nørskov, J.K., and Puska, M.J., Phys. Rev. B 35, 7423 (1987).Google Scholar
42. Šob, M. and Vitek, V., in Stability of Materials, edited by Gonis, A., Turchi, P.E.A., and Kudrnovský, J. (Plenum, New York, 1996), p. 449.Google Scholar
43. Šob, M. and Vitek, V., to be published.Google Scholar
44. Šob, M., Wang, L.G., and Vitek, V., Comput. Mat. Sci. 8, 100 (1997).Google Scholar