Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T17:14:37.887Z Has data issue: false hasContentIssue false

Electronic Structure and Hydrogen Desorption in NaAlH4

Published online by Cambridge University Press:  01 February 2011

S. Li
Affiliation:
Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284–2000 USA
P. Jena
Affiliation:
Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284–2000 USA
C. M. Araujo
Affiliation:
Condensed Matter Theory Group, Department of Physics, Uppsala University, Box530, SE-751 21 Uppsala, Sweden
R. Ahuja
Affiliation:
Condensed Matter Theory Group, Department of Physics, Uppsala University, Box530, SE-751 21 Uppsala, Sweden
Get access

Abstract

First principles calculations based on gradient corrected density functional theory are carried out to understand the electronic structure and mechanisms responsible for desorption of hydrogen from Ti doped and vacancy containing sodium-alanate (NaAlH4). The energy necessary to remove a hydrogen atom from Ti doped NaAlH4 is significantly smaller than that from pristine NaAlH4 irrespective of whether Ti substitutes the Na or the Al site. However, the presence of Na and Al vacancies is shown to play an even more important role: The removal of hydrogen associated with both Na and Al vacancies is found to be exothermic. It is suggested that this role of vacancies can be exploited in the design and synthesis of complex light metal hydrides suitable for hydrogen storage.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Grochala, W. and Edwards, P. P., Chem. Rev. 104, 1283 (2004).Google Scholar
2 Cortright, R. D., Davda, R. R., and Dumesic, J. A., Nature 418, 964 (2002).Google Scholar
3 Alper, J., Science 299, 1686 (2003).Google Scholar
4 Chen, P., Xiong, Z. T., Luo, J. Z., et al., Nature 420, 302 (2002).Google Scholar
5 Schlapbach, L. and Zuttel, A., Nature 414, 353 (2001).Google Scholar
6 Kircher, O. and Fichtner, M., J. Appl. Phys. 95, 7748 (2004).Google Scholar
7 Bogdanovic, B., Brand, R. A., Marjanovic, A., et al., J. Alloys. Comp. 302, 36 (2000).Google Scholar
8 Bogdanovic, B. and Schwickardi, M., J. Alloys. Comp. 253, 1 (1997).Google Scholar
9 Thomas, G. J., Gross, K. J., Yang, N. Y. C., et al., J. Alloys. Comp. 330, 702 (2002).Google Scholar
10 Sun, D. L., Kiyobayashi, T., Takeshita, H. T., et al., J. Alloys. Comp. 337, L8 (2002).Google Scholar
11 Sandrock, G., Gross, K., and Thomas, G., J. Alloys. Comp. 339, 299 (2002).Google Scholar
12 Gross, K. J., Sandrock, G., and Thomas, G. J., J. Alloys. Comp. 330, 691 (2002).Google Scholar
13 Brinks, H. W., Jensen, C. M., Srinivasan, S. S., et al., J. Alloys. Comp. 376, 215 (2004).Google Scholar
14 Weidenthaler, C., Pommerin, A., Felderhoff, M., et al., Phys. Chem. Chem. Phys. 5, 5149 (2003).Google Scholar
15 Majzoub, E. H. and Gross, K. J., J. Alloys. Comp. 356, 363 (2003).Google Scholar
16 Bogdanovic, B., Felderhoff, M., Germann, M., et al., J. Alloys. Comp. 350, 246 (2003).Google Scholar
17 Walters, R. T. and Scogin, J. H., J. Alloys. Comp. 379, 135 (2004).Google Scholar
18 Felderhoff, M., Klementiev, K., Grunert, W., et al., Phys. Chem. Chem. Phys. 6, 4369 (2004).Google Scholar
19 Balema, V. P., Wiench, J. W., Dennis, K. W., et al., J. Alloys. Comp. 329, 108 (2001).Google Scholar
20 Iniguez, J., Yildirim, T., Udovic, T. J., et al., Phys. Rev. B 70, 060101(R) (2004).Google Scholar
21 Rao, B. K., Jena, P., Burkart, S., et al., Phys. Rev. Lett. 86, 692 (2001). P. Jena and S. N. Khanna (to be published).Google Scholar
22 Moyses Araujo, C., Li, S., Ahuja, R., et al., (to be published).Google Scholar
23 Ahuja, R., Jena, P., Osorio Guillen, J. M., et al., (to be published).Google Scholar
24 Lovvik, O. M. and Opalka, S. M., Phys. Rev. B 71, 054103 (2005).Google Scholar
25 Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
26 Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1966).Google Scholar
27 Blochl, P. E., Phys. Rev. B 50, 17953 (1994).Google Scholar
28 Kresse, G. and Furthmuller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
29 Hauback, B. C., Brinks, H. W., Jensen, C. M., et al., J. Alloys. Comp. 358, 142 (2003).Google Scholar
30 Ke, X. Z. and Tanaka, I., Phys. Rev. B 71, 024117 (2005).Google Scholar