Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T05:31:06.988Z Has data issue: false hasContentIssue false

Electronic Structure and Thermoelectric Properties of Ytterbium-Filled Skutterudites

Published online by Cambridge University Press:  21 March 2011

Hiroaki Anno
Affiliation:
Department of Electronics and Computer Science, Science University of Tokyo in Yamaguchi, 1-1-1 Daigaku-dori, Onoda 756-0884, Japan
Kazuhiro Ashida
Affiliation:
Department of Electronics and Computer Science, Science University of Tokyo in Yamaguchi, 1-1-1 Daigaku-dori, Onoda 756-0884, Japan
Kakuei Matsubara
Affiliation:
Department of Electronics and Computer Science, Science University of Tokyo in Yamaguchi, 1-1-1 Daigaku-dori, Onoda 756-0884, Japan
George S. Nolas
Affiliation:
Department of Physics, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, U.S.A
Koji Akai
Affiliation:
Department of Advanced Materials Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
Mitsuru Matsuura
Affiliation:
Department of Advanced Materials Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
Jiro Nagao
Affiliation:
Institute for Energy Utilization, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo 062-8517, Japan
Get access

Abstract

The electronic structure and thermoelectric properties of Yb partially filled CoSb3 skutterudite compounds have been investigated by x-ray photoelectron spectroscopy and band calculation in terms of an itinerant f electron model. In these materials, the significant effect of Yb filling is the large reduction of lattice thermal conductivity, remaining relatively high electron mobility and Seebeck coefficient, resulting in high thermoelectric figure of merit. We discuss the effects of the valence fluctuation between Yb2+ and Yb3+ and the strong hybridization of Yb 4f states with the valence band states on the electronic properties and their relation to thermoelectric properties for Yb partially filled CoSb3 compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sales, B. C., Mandrus, D., and Williams, R. K, Science 272, 1325 (1996).Google Scholar
2. Keppens, V., Mandrus, D., Sales, B. C., Chakoumakos, B. C., Dai, P., Coldea, R., Maple, M. B., Gajewski, D. A., Freeman, E. J., and Bennington, S., Nature 395, 876 (1998).Google Scholar
3. Dilley, N. R, Freeman, E. J., Bauer, E. D., and Maple, M. B., Phys. Rev. B 58, 6287 (1998).Google Scholar
4. Leithe-Jasper, A., Kaczorowski, D., Rogl, P., Bogner, J., Reissner, M., Steiner, W., Wiesinger, G., and Godart, C., Solid State Commun. 109, 395 (1999).Google Scholar
5. Dilley, N. R, Bauer, E. D., Maple, M. B., Dordevic, S., Basov, D. N., Freibert, F., Darling, T. W., Migliori, A., Chakoumakos, B. C., and Sales, B. C., Phys. Rev. B 61, 4608 (2000).Google Scholar
6. Bauer, E., Galatanu, A., Michor, H., Hilscher, G., Rogl, P., Boulet, P., and No, H. l, Eur. Phys. J. B 14, 483 (2000).Google Scholar
7. Dilley, N. R., Bauer, E. D., Maple, M. B., and Sales, B. C., J. Appl. Phys. 88, 1948 (2000).Google Scholar
8. Nolas, G. S., Kaeser, M., Littleton, R. T., and Tritt, T. M., Appl. Phys. Lett. 77, 1855 (2000).Google Scholar
9. Anno, H., and Matsubara, K., Recent Res. Devel. Applied Phys. 3, (Transworld Research Network, Trivandrum, India, 2000), pp. 4761.Google Scholar
10. Anno, H., Nagamoto, Y., Ashida, K., Taniguchi, E., Koyanagi, T., and Matsubara, K., Proc. 19th Int. Conf. on Thermoelectrics, Cardiff, UK, 2000, pp. 9093.Google Scholar
11. Anno, H., Matsubara, K., Caillat, T., and Fleurial, J.-P., Phys. Rev. B 62, 10737 (2000).Google Scholar
12. Akai, K., Oshiro, K., and Matsuura, M., Proc. 18th Int. Conf. on Thermoelectrics, Baltimore MD, 1999 (IEEE, Piscataway, NJ, 1999), pp. 444447.Google Scholar
13. Gerken, F., J. Phys. F 13, 703 (1983).Google Scholar
14. Oh, S. -J., Suga, S., Kakizaki, A., Taniguchi, M., Ishii, T., Kang, J. -S., Allen, J. W., Gunnarsson, O., Christensen, N. E., Fujimori, A., Suzuki, T., Kasuya, T., Miyahara, T., Kato, H., Schnhammer, K., Torikachvili, M. S., and Maple, M. B., Phys. Rev. B 37, 2861 (1988).Google Scholar
15. Nordstrm, L. and Singh, D. J., Phys. Rev. B 53, 1103 (1996).Google Scholar
16. Nolas, G. S., Cohn, J. L., and Slack, G. A., Phys. Rev. B, 58, 164 (1998).Google Scholar
17. Morelli, D. T., Meisner, G. P., Chen, B., Hu, S., and Uher, C., Phys. Rev. B, 56, 7376 (1997).Google Scholar
18. Anno, H., Matsubara, K., Notohara, Y., Sakakibara, T., and Tashiro, H., J. Appl. Phys. 86, 3780 (1999).Google Scholar
19. Arushanov, E., Respaud, M., Rakoto, H., Broto, J. M., and Caillat, T., Phys. Rev. B 61, 4672 (2000).Google Scholar
20. Nagao, J., Uchida, T., Takeya, S., Ebinuma, T., Anno, H., Matsubara, K., Hatta, E., and Mukasa, K., Appl. Phys. Lett. (to be published).Google Scholar