Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T03:05:41.398Z Has data issue: false hasContentIssue false

Electronic Structure Calculations of Defect C60 with One or Two Vacancies

Published online by Cambridge University Press:  15 February 2011

J.L. MorÁn-lÓpez
Affiliation:
Instituto de Física, “Manuel Sandoval Vallarta”, Universidad de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, México
J. Dorantes-DÁvila
Affiliation:
Instituto de Física, “Manuel Sandoval Vallarta”, Universidad de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, México
J.M. Cabrera-Trujillo
Affiliation:
Facultad de Ciencias, Universidad de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, México
Get access

Abstract

The electronic properties of defect C60 with one or two vacancies, are calculated by using a Hubbard-like Hamiltonian for sp-electrons in the unrestricted Hartree-Fock approximation. Results are given for the cohesive energy and local charge distribution of the different non-equivalent sites. These results might support a possible mechanism to encapsulate atoms in the internal cavities of C60. This mechanism involves the production of C60 molecules with two carbon isotopes AC and BC (A, B = 12,13,14). The molecules AC59BC1 and AC58BC2 are separated from the total production and collected in a chamber under partial pressure of the element to be inserted.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., Nature 318, 162 (1985).Google Scholar
2. Heath, J. R., O'Brien, S. C., Zhang, Q., Liu, Y., Curl, R. F., Kroto, H. W., Tittel, E. K., and Smalley, R. E., J. Am. Chem. Soc. 107, 7779 (1985).Google Scholar
3. Bennemann, K. H. (private communication).Google Scholar
4. Saunders, M., Jiménez-Vázquez, H. A., Cross, R. J., and Poreda, R. J., Science 259, 1428 (1991).Google Scholar
5. Weiske, T., Böhme, D. K., Hrušák, J., Krätschmer, W., and Schwarz, H., Angew. Chem. Int. Ed. Engl. 30, 844 (1991).Google Scholar
6. Wan, Z., Christian, J. F., and Anderson, S. L., J. Chem. Phys. 96, 3344 (1992).Google Scholar
7. Wan, Z., Christian, J. F., Basir, Y., and Anderson, S. L., J. Chem. Phys. 99, 5858 (1993).various of the inequivalent sites inGoogle Scholar
8. Murry, R. L. and Scuseira, G. E., Science 263, 791 (1994).Google Scholar
9. Morán-López, J. L., Cabrera-Trujillo, J.M., and , Dorantes-Dávila, submitted to Chem. Phys. Lett.Google Scholar
10. Dorantes-Dávila, J., Vega, A. and Pastor, G.M., Phys. Rev. B47, 12995 (1993).Google Scholar
11. Harrison, W.A., Electronic Structure and the Properties of Solids (Freeman, San Francisco, 1980); M. van Schilfgaarde and W.A. Harrison, Phys. Rev. B 33, 2653 (1986).Google Scholar
12. Pastor, G.M., Dorantes-Dáivila, J. and Bennemann, K.H., Chem. Phys. Lett. 148, 459 (1988).Google Scholar
13. Haydock, R., in Solid State Physics, (Academic Press, London, 1980), Vol. 35, p. 215.Google Scholar
14. Vega, A., Balbds, L.C., Dorantes-Dávila, J. and Pastor, G.M., Phys. Rev. B47, 4742 (1993).Google Scholar
15. Papaconstantopoulos, D. A. in Handbook of the Band Structue of Elemental Solids, (Plenum Press, New York, 1986).Google Scholar