Hostname: page-component-5f745c7db-96s6r Total loading time: 0 Render date: 2025-01-06T07:50:49.006Z Has data issue: true hasContentIssue false

Electronic Structure of Planar Faults and Point Defects in High Temperature Intermetallics

Published online by Cambridge University Press:  25 February 2011

J.M. Maclaren
Affiliation:
Department of Physics, Tulane University, New Orleans, LA 70118
C. Woodward
Affiliation:
U.E.S Inc., Dayton, OH 45432
Get access

Abstract

First principles electronic structure calculations, using the layer Korringa-Kohn-Rostoker method, are reported for isolated planar faults in TiAl. The calculated fault energies are discussed in the context of suggested superdislocation separation reactions. The influence of dilute impurities on fault energies are treated using the coherent potentialapproximation. Using this approach, the variation of fault energies in TiAl resulting from stoichiometry changes and from the addition of Mn axe calculated, and compared to recent experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] see for example, Faulkner, J.S. in Progess in Materials Science, eds. Christian, J.W., Hassen, P. and Massalski, T.B., Pergamon, New York, p.385 (1973).Google Scholar
[2] MacLaren, J.M., Crampin, S., Vvedensky, D.D. and Pendry, J.B., Phys. Rev. B40, 12164 (1989); J.M. MacLaren, S. Crampin, D.D. Vvedensky R.C. Albers and J.B. Pendry, Comput. Phys. Comm. 60, 365, (1990).Google Scholar
[3] Maclaren, J.M., Gonis, A. and Schadler, G., submitted to Phys. Rev. BGoogle Scholar
[4] Kawabata, T., Kania, T. and Izumi, O., Acta Metall. 33, 1355, (1985).Google Scholar
[5] Tsujimoto, T. and Hashimoto, K., Mat. Res. Soc. Symp. Proc. 133, 391, (1989).CrossRefGoogle Scholar
[6] Woodward, C., MacLaxen, J.M. and Rao, S., Mat. Res. Soc. Symp. Proc. 213, 715 (1991); C. Woodward, J.M. MacLaren and S. Rao, submitted to J.Mat. Res.Google Scholar
[7] Faulkener, J.S. and Stocks, G.M., Phys. Rev. B 21, 3222, (1980).Google Scholar
[8] Pendry, J.B. Low Energy Electron Diffraction, Academic Press, London, 1974.Google Scholar
[9] Johnson, D.D., Phys. Rev. B 38, 12807, (1988).CrossRefGoogle Scholar
[10] Johnson, D.D., Nicholson, D.M., Pinski, F.J., Györffy, B.L. and Stocks, G.M., Phys. Rev. B 41, 9701, (1990).Google Scholar
[11] Kaiser, J.H., Durham, P.J., Blake, R.J. and Wille, L.T., J. Phys. C21, L1159 (1988).Google Scholar
[12] Kaiser, J.H. and Wille, L.T., Mat. Res. Soc. Symp. Proc. in press.Google Scholar
[13] Fu, C.L. and Yoo, M.H., Mat. Res. Soc. Symp. Proc. 186, (1990); C.L. Fu and M.H. Yoo, Phil. Mag. Lett. 62, 159, (1990).Google Scholar
[14] Greenberg, B.F., Anisimov, V.I., Gornostirev, Yu. N. and Taluts, G.G., Scripta Met. 22, 859, (1988).Google Scholar
[15] -Lui, S. et al. , Phys. Rev. B 42, 1582, (1990).Google Scholar
[16] Hug, G. et al. Phil. Mag. A54, 47 (1986); ibid A57, 499, (1988).Google Scholar
[17] Kim, Y.W., Journal of Metals, 24 (1989).Google Scholar
[18] Doi, H. et al. Mat. Trans., JIM 31, 975, (1990).Google Scholar
[19] Hug, G. and Veyssiere, P., in Int. Symposium on Electron Microscopy in Plasticity and Fracture Research of Materials, Dresden, 1989.Google Scholar