Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T19:08:22.272Z Has data issue: false hasContentIssue false

Electro-Optics of Unilamellar Vesicles

Published online by Cambridge University Press:  15 February 2011

N. Asgharian
Affiliation:
Center for Colloidal and Interfacial Dynamics, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019-0065, USA, schelly@uta.edu
R. L. Meline
Affiliation:
Center for Colloidal and Interfacial Dynamics, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019-0065, USA, schelly@uta.edu
Z. A. Schelly
Affiliation:
Center for Colloidal and Interfacial Dynamics, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019-0065, USA, schelly@uta.edu
Get access

Abstract

Electric field-induced transient birefringence and light scattering are reported for aqueous suspensions of synthetic unilamellar bilayer vesicles, prepared from the lipid dioleoylphosphatidylcholine (DOPC). The multiexponential birefringence relaxations observed on the microsecond and millisecond timescales are interpreted in terms of elongation and reorientation of induced dipolar vesicles, their linear chain formation, and electrofusion (and possibly electroporation) of the vesicles. Above certain threshold values of vesicle concentration, field-induced light scattering occurs concomitant with the birefringence. The corresponding transient signals corroborate the linear chain formation and subsequent fusion of the induced dipolar vesicles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Neumann, E., Sowers, A. E. and Jordan, C. A., Eds., Electroporation and Electrofusion in Cell Biology (Plenum Press, New York, 1989).Google Scholar
2. Tsong, T. Y., Bioelectrochem. Bioenerg. 24, 271 (1990); and references therein.Google Scholar
3. O'Konski, C. T., in Transport by Proteins, edited by Blauer, G. and Sund, H., FEBS Symposium No. 58, Konstanz, Germany, July 9–15, 1978 (W. de Gruyter, Berlin), p. 237.Google Scholar
4. Ruderman, G., Jennings, B. R. and Dean, R. T., Biochim. Biophys. Acta 776, 60 (1984).Google Scholar
5. Schelly, Z. A., Curr. Opin. Colloid Interface Sci. 2, 37 (1997).Google Scholar
6. Asgharian, N., Wu, X., Meline, R. L., Derecskei, B., Cheng, H., and Schelly, Z. A., J. Mol. Liq. 72, 315 (1997).Google Scholar
7. Mayer, L. D., Hope, M. J., Cullis, P. R., Biochim. Biophys. Acta, 858, 161 (1986).Google Scholar
8. Hope, M. J., Bally, M. B., Webb, G., Cullis, P. R., Biochim. Biophys. Acta 812, 55 (1985).Google Scholar
9. Frederick, E., Houssier, C., Electric Dichroism and Electric Birefringence (Clarendon Press, Oxford, 1973).Google Scholar
10. Tekle, E., Ueda, M. and Schelly, Z. A., J. Phys. Chem. 93, 5966 (1989).Google Scholar
11. Ermolina, I., Polevaya, Y., Feldman, Y., Asgharian, N. and Schelly, Z. A., to be published.Google Scholar
12. Safran, S. A., J. Chem. Phys., 78, 2073 (1983).Google Scholar
13. Chen, H. M. and Schelly, Z. A., Langmuir 11, 758 (1995).Google Scholar
14. Helfrich, W., J. Phys. (Paris) 47, 321 (1986).Google Scholar