Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T14:00:32.806Z Has data issue: false hasContentIssue false

Electroreflectance from Gallium Nitride Using Second-Harmonic Generation

Published online by Cambridge University Press:  21 February 2011

Joseph Miragliotta
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, MD 20723-6099
Dennis K. Wickenden
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, MD 20723-6099
Get access

Abstract

The optical second-harmonic (SH) response of a reverse biased gallium nitride (GaN) film was investigated for SH photon energies near the fundamental absorption edge. With the application of a DC electric field (∼ 100 to 220 kV/cm) along the optical axis of the sample, a strong two-photon resonance was observed in the specular reflected SH signal. This resonance was attributed to electric-field induced SH generation, EFISH, a third-order nonlinear response which arises from an induced polarization that is linearly dependent on the amplitude of the DC field. The EFISH contribution was spectrally localized at the bandedge, demonstrating the potential of SH spectroscopy for analysis of critical points in the band structure of semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Seraphin, B. O., in Proceedings of the Seventh International Conference on the Physics of Semiconductors, edited by Hulin, M. (Dunod, Paris, 1964), p. 165.Google Scholar
2 Aspnes, D. E. and Rowe, J. E., Phys. Rev. B5, 4022 (1972).Google Scholar
3 Aspnes, D. E. and Studna, A. A., Phys. Rev. B7, 4605, (1973).Google Scholar
4 Lee, C. H., Chang, R. K., and Bloembergen, N., Phys. Rev. Lett. 18, 167 (1967).Google Scholar
5 Levine, B. F. and Bethea, C. G., J. Chem. Phys. 65, 2429 (1976).Google Scholar
6 Singer, K. D. and Garito, A. F., J. Chem. Phys. 75, 3572 (1981).Google Scholar
7 Kishida, H., Hasegawa, T., Iwasa, Y., Koda, T., Tokura, Y., Tachibana, H., Matsumoto, M., Wada, S., Lay, T. T., and Tashiro, H., Phys. Rev. B50, 7786 (1994)).Google Scholar
8 Qi, J., Yeganeh, M. S., Koltover, I., Yodh, A. G., and Theis, W. M., Phys. Rev. Lett. 71 (1993).Google Scholar
9 Lantz, J. M. and Corn, R. M., J. Phys. Chem. 98, 4899 (1994).Google Scholar
10 Aktsipetrov, O. A., Fedyanin, A. A., Golovkina, V. N., and Murzina, T. V., Optics Letters 19, 1450 (1994).Google Scholar
11 Wickenden, D. K., Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., and Estes-Wickenden, A., Mat. Res. Soc. Symp. Proc. 221, 167 (1991).Google Scholar
12 Miragliotta, J. and Wickenden, D. K., Phy.Rev. B50, 14960, (1994).Google Scholar
13 Schefold, J., J. Electrochem. Soc. 139, 2862 (1992).Google Scholar
14 Miragliotta, J., Bryden, W. A., Kistenmacher, T. J., and Wickenden, D. K., Mat. Res. Soc. Symp. Proc. 339, 465 (1994).Google Scholar
15 Boyd, R., Nonlinear Optics, (Academic Press, 1992), Chap. 1.Google Scholar
16 Ghahramani, E., Moss, D. J., and Sipe, J. E., Phys. Rev. B43, 9700 (1991).Google Scholar
17 Ghahramani, E., Moss, D. J., and Sipe, J. E., Phys. Rev. B43, 8990 (1991).Google Scholar
18 Moss, D. J., Ghahramani, E., Sipe, J., and van Driel, H. M., Phys. Rev. B41, 1542 (1990).Google Scholar
19 Tsang, L., Chuang, S.-L., and Lee, S. M., Phys. Rev. B41, 5942 (1990).Google Scholar