Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T21:26:26.807Z Has data issue: false hasContentIssue false

Electrospun Nylon-Graphene Nanocomposites Synthesis and Microstructure

Published online by Cambridge University Press:  07 June 2012

Loyda Albañil-Sanchez
Affiliation:
Lab. De Nanopolimeros y Coloides, Instituto de Ciencias Físicas, Universidad Nacional Autonoma de Mexico, Cuernavaca Mor. 62210, MEXICO CIICAp, UAEM, Cuernavaca Mor. 62210, MEXICO
Angel Romo-Uribe*
Affiliation:
Lab. De Nanopolimeros y Coloides, Instituto de Ciencias Físicas, Universidad Nacional Autonoma de Mexico, Cuernavaca Mor. 62210, MEXICO
Araceli Flores
Affiliation:
Instituto de Estructura de la Materia, C.S.I.C., Instituto de Estructura de la Materia, C.S.I.C. Serrano 119, 28006 Madrid, SPAIN
R Cruz-Silva
Affiliation:
CIICAp, UAEM, Cuernavaca Mor. 62210, MEXICO
*
*To whom correspondence should be addressed: aromo-uribe@fis.unam.mx
Get access

Abstract

There has been much interest in the last few years on materials reinforced with nanometer scale particles. These so-called nanocomposites can exhibit hybrid properties derived from its components. One of the most promising nanocomposites is that based on polymers reinforced with single-layered carbon sheets named graphene. The reason is that graphene can significantly improve the physical properties of the polymeric material once it is completely dispersed in the matrix. In this work nylon/graphene nanocomposites were prepared starting from the synthesis of graphite oxide (GO). Direct oxidation of graphite powder was utilized to produce GO. That is, the oxidation reaction produced graphite layers with functional groups containing oxygen. The aim was to increase the polarity of GO to enable a good dispersion in polar solvents. Then, nylon/graphene nanocomposites were prepared by reducing GO in the presence of nylon. Finally, non-woven membranes, with nanometer sized filaments, of nylon/graphene were electrospun. The morphology and microstructure of the nanocomposites was investigated via electron microscopy and X-ray diffraction.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Duncan, T.V., J. Colloid and Interface Science 363, 124 (2011).Google Scholar
2. Thomassin, J.M., Pagnoulle, C., Caldarella, G., Germain, A. and Jérôme, R., Journal of Membrane Science 270, 5056 (2006).Google Scholar
3. Brownson, D.A.C., Kampouris, D.K. and Banks, C.E., Journal of Power Sources 196, 48734885 (2011).Google Scholar
4. Feng, L., Chen, Y., Ren, J. and Qu, X., Biomaterials 32, 29302937 (2011).Google Scholar
5. Wang, Y., Li, Y., Tang, L., Lu, J. and Li, J., Electrochemistry Communications 11, 889892 (2009).Google Scholar
6. Kuila, T., Bose, S., Khanra, P., Mishra, A.K., Kim, N.H. and Lee, J.H., Biosensors and Bioelectronics 26, 46374648 (2011).Google Scholar
7. Pan, Y.X., Yu, Z.Z., Ou, Y.C. and Hu, G.H., J. Polym. Sci., Parte B: Polym. Phys., 38, 1626 (2000).Google Scholar
8. Novoselov, K. S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Gregorieva, I.V. and Firsov, A.A., Science 306, 666 (2004).Google Scholar
9. Kim, H., Abdala, A.A. and Macosko, C.W., Macromolecules 43(16), 65156530 (2010).Google Scholar
10. Higginbotham, A.L., Lomeda, J.R., Morgan, A.B. and Tour, J.M., ACS Appl. Mat. 30(20), A-F (2009).Google Scholar
11. Cerezo, F.T., Preston, C.M.L. and Shanks, R.A., J. Macromol. Mater. Eng. 292. 155168 (2007).Google Scholar
12. Cote, L.J., Cruz-Silva, R. and Huang, J., J. Am. Chem. Soc. 131(31), 1102711032 (2009).Google Scholar
13. Wang, S., Tambraparni, M., Qiu, J., Tipton, J. and Dean, D., Macromol. 42(14), 52515255 (2009).Google Scholar
14. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S., Nature 442, 282285 (2006).Google Scholar
15. Castro-Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K., Rev. Mod. Phys. 81, 109162 (2009).Google Scholar
16. Compton, O.C. and Nguyen, S.T., Small 6(6), 711723 (2010).Google Scholar
17. Scully, K. and Bissessur, R., Thermochimica Acta, 490(1-2), 3236 (2009).Google Scholar
18. Chen, G., Wu, C., Weng, W., Wu, D. and Yan, W., Polym. 44, 17811784 (2003).Google Scholar
19. She, Y., Chen, G. and Wu, D., Polym Int. 56, 679685 (2007).Google Scholar
20. Xu, C., Wang, X. and Zhu, J., J. Phys. Chem. C. 112(50), 1984119845 (2008).Google Scholar
21. Formhals, A., US Patent. 1,975,504 (1934).Google Scholar
22. Fong, H., J. Polym. Sci. 45. 24272432 (2004).Google Scholar
23. Thavasi, V., Singh, G. and Ramakrishna, S., Energy Environ. Sci. 1. 205221 (2008).Google Scholar
24. Frenot, A. and Chronakis, I.S., Curr. Opinion Coll. Interface Sci. 8. 6475 (2003).Google Scholar
25. Hummers, W.S. and Offeman, R.E., J. Am. Chem. Soc. 80, 1339 (1958).Google Scholar
26. Gilje, S., Han, S., Wang, M., Wang, K.L., Kaner, R., Nano Lett. 7(11), 33943398 (2007).Google Scholar
27. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T. and Ruoff, R.S., Carbon, 45(7), 15581565 (2007).Google Scholar
28. Romo-Uribe, A., Arizmendi, L., Romero-Guzmán, M.E., Sepúlveda-Guzmán, S. and Cruz-Silva, R., ACS Appl. Materials and Interfaces 1(11), 25022508 (2009).Google Scholar
29. Albañil-Sanchez, L., Romo-Uribe, A., Piza-Betancourt, J.L. and Cruz-Silva, R., Mater. Res. Soc. Symp. Proc.. (2012), in the press.Google Scholar
30. Si, Y. and Samulski, E.T., Nano Lett. 8(6), 16791682 (2008).Google Scholar
31. Wang, S., Zhang, Y., Abidi, N. and Cabrales, L., Langmuir, 25(18), 1107811081 (2009).Google Scholar
32. Bourlinos, A.B., Gournis, D., Petridis, D., Szabó, T., Szeri, A. and Dékány, I., Langmuir, 19(15), 60506055 (2003).Google Scholar
33. Guerrini, L.M., Branciforti, M.C., Canova, T. and Bretas, R.E., Mat. Res. 12(2), 181190 (2009).Google Scholar
34. Shen, L., Phang, I.Y., Chen, L., Liu, T. and Zeng, K., Polym. 45, 33413349 (2004).Google Scholar
35. Kakade, M.V., Givens, S., Gardner, K., Lee, K.H., Chase, D.B. and Rabolt, J.F., J. Am. Chem. Soc. 129(10), 27772782 (2007).Google Scholar
36. Brill, R., Prakt, J.. Chem. Vol. 4964 (1942).Google Scholar
37. Murthy, N.S. and Minor, H., Polym. 31, 9961002 (1990).Google Scholar