Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T02:42:40.021Z Has data issue: false hasContentIssue false

Electrosynthesized Polystyrene Sulphonate-Capped Zinc Oxide Nanoparticles as Electrode Modifiers for Sensing Devices

Published online by Cambridge University Press:  08 September 2014

Maria C. Sportelli
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, 70126 Bari, Italy.
Diana Hötger
Affiliation:
Institut für Analytische und Bioanalytische Chemie, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
Rosaria A. Picca
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, 70126 Bari, Italy.
Kyriaki Manoli
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, 70126 Bari, Italy.
Christine Kranz
Affiliation:
Institut für Analytische und Bioanalytische Chemie, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
Boris Mizaikoff
Affiliation:
Institut für Analytische und Bioanalytische Chemie, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
Luisa Torsi
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, 70126 Bari, Italy.
Nicola Cioffi
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, 70126 Bari, Italy.
Get access

Abstract

ZnO nanoparticles were prepared by a green electrochemical synthesis method applying low current densities followed by a thermal treatment. Sodium polystyrene sulphonate (PSS) was used as stabilizer in the electrolytic aqueous medium due to its biocompatibility and stability. The as-prepared nanocolloids were then annealed to improve their stability, and then converted via hydroxide species into stoichiometric oxide. Different calcination temperatures were studied. ZnO@PSS nanomaterials were deposited onto SiO2/Si substrates, in part in combination with an organic semiconductor layer to evaluate their influence on organic field effect transistors (OFETs). All nanomaterials and composite layers were characterized by morphological and spectroscopic techniques. Promising results regarding the use of ZnO@PSS in OFETs could be demonstrated.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arya, S. K., Saha, S., Ramirez-Vick, J. E., Gupta, V., Bhansali, S., and Singh, S. P., Anal. Chim. Acta 737, 1 (2012).CrossRefGoogle Scholar
Tak, M., Gupta, V., and Tomar, M., Biosens. Bioelectron. 59, 200 (2014).CrossRefGoogle Scholar
Meulenkamp, E. A., J. Phys. Chem. B 102, 5566 (1998).CrossRefGoogle Scholar
Baruah, S. and Dutta, J., Sci. Technol. Adv. Mater. 10, 013001 (2009).CrossRefGoogle Scholar
Sportelli, M.C., Scarabino, S., Picca, R.A., and Cioffi, N., in CRC Concise Encycl. Nanotechnol. (Taylor & Francis Group), submitted.Google Scholar
Lin, P. and Yan, F., Adv. Mater. 24, 34 (2012).CrossRefGoogle Scholar
Chandrappa, K. G., Venkatesha, T. V., Vathsala, K., and Shivakumara, C., J. Nanoparticle Res. 12, 2667 (2010).CrossRefGoogle Scholar
Hales, M. C. and Frost, R. L., Polyhedron 26, 4955 (2007).CrossRefGoogle Scholar
National Institute of Standards and Technology, NIST X-Ray Photoelectron Spectroscopy Database Version 4.1 (2012).Google Scholar
Angione, M. D., Cotrone, S., Magliulo, M., Mallardi, A., Altamura, D., Giannini, C., Cioffi, N., Sabbatini, L., Fratini, E., Baglioni, P., Scamarcio, G., Palazzo, G., and Torsi, L., Proc. Natl. Acad. Sci. 109, 6429 (2012).CrossRefGoogle Scholar
Torsi, L. and Dodabalapur, A., Anal. Chem. 77, 380 A (2005).CrossRefGoogle Scholar