Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T05:10:30.268Z Has data issue: false hasContentIssue false

Elemental Analysis On Group-Hi Nitrides Using Heavy Ion Erd

Published online by Cambridge University Press:  10 February 2011

G. Dollinger
Affiliation:
Physik-Department E12, Technische Universität München, D-85747 Garching, Germany
S. Karsch
Affiliation:
Physik-Department E12, Technische Universität München, D-85747 Garching, Germany
O. Ambacher
Affiliation:
Walter Schottky Institute, Technische Universität München, D-85747 Garching, Germany
H. Angerer
Affiliation:
Walter Schottky Institute, Technische Universität München, D-85747 Garching, Germany
A. Bergmaier
Affiliation:
Physik-Department E12, Technische Universität München, D-85747 Garching, Germany
O. Schmelmer
Affiliation:
Physik-Department E12, Technische Universität München, D-85747 Garching, Germany
M. Stutzmann
Affiliation:
Walter Schottky Institute, Technische Universität München, D-85747 Garching, Germany
Get access

Abstract

Elastic recoil detection (ERD) using energetic heavy ion beams (e.g. 170 MeV 127I) is a suitable method to measure depth profiles of light and medium heavy elements in thin films. The main advantages of ERD, which makes it favorable over many other techniques for elemental analysis, is the possibility to obtain reliable and quantitative results, a sensitivity in the ppm region or a depth resolution even better than 1 nm.

ERD analysis was employed to obtain quantitative information about the aluminium content x in MBE grown AlxGa1−xN layers on Al2O3 substrates. Using this stoichiometry information and the lattice constants obtained from high resolution X-ray diffraction, Vegard's law could be confirmed with high accuracy. Secondly, nitridation of heated Al2O3 substrates in NH3 atmosphere was investigated using high resolution ERD. A substantial nitrogen content on the surface of the substrate was detected which means a nearly complete AIN layer grown on the Al2O3 surface by a heat treatment only. Such a nitridation layer can be the base for further growth of nitrides on Al2O3 surfaces. As a third, the impurity content of group III nitrides was investigated in dependence on deposition conditions for both, MBE and MOCVD grown samples. In all samples investigated an oxygen concentration larger than 100 ppm was detected which is much higher than the intrinsic charge carrier density of these samples. In addition it is shown that the efficiency of p-doping by Mg may not only be hindered by hydrogen but also by carbon impurities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. L'Ecuyer, J., Brassard, C., Cardinal, C., Chabbal, J., Deschênes, L., Labrie, J.P., Terreault, B., Martel, J.G. and St.-Jacques, R., J. Appl. Phys. 47 (1976) 381.10.1063/1.322288Google Scholar
2. Stoquert, J.P., Guillaume, G., Hage-Ali, M., Grob, J.J., Ganter, C. and Siffert, P., Nucl. Instr. and Meth. B 44 (1989) 184.10.1016/0168-583X(89)90426-6Google Scholar
3. Assmann, W., Davies, J.A., Dollinger, G., Forster, J.S., Huber, H., Reichelt, Th., Siegele, R., Nucl. Instr. and Meth. B 118 (1996) 242.10.1016/0168-583X(95)01183-8Google Scholar
4. Bergmaier, A., Dollinger, G., Frey, C.M., Nucl. Instr. and. Meth.B, in press.Google Scholar
5. Löffler, M., Scheerer, H.-J. and Vonach, H., Nucl. Instr. and Meth. 111 (1973) 1.10.1016/0029-554X(73)90090-6Google Scholar
6. Dollinger, G., Nucl. Instr. and Meth. B 79 (1993) 513.Google Scholar
7. Dollinger, G., Frey, C.M., Bergmaier, A., Faestermann, T., Nucl. Instr. and Meth. B, in press.Google Scholar
8. Bergmaier, A. and Dollinger, G., Fres. J. Anal. Chem. 353 (1995) 582.10.1007/BF00321328Google Scholar
9. Dollinger, G., Boulouednine, M., Bergmaier, A., Faestermann, T., Frey, C.M., Nucl. Instr. and Meth. 118 (1996) 291.10.1016/0168-583X(95)01469-1Google Scholar
10. Zeit. f. Physik 5 (1921) 17.Google Scholar
11. Angerer, H., Brunner, D., Freudenberg, F., Ambacher, O., Stutzmann, M., Höpler, R., Metzger, T., Born, E., Dollinger, G., Bergmaier, A., Karsch, S. and Körner, H.J., Appl. Phys. Lett. 71 (1997) 1504.10.1063/1.119949Google Scholar
12. Kim, K., Lambrecht, W.R. and Segall, B., Phys. Rev. B 53 (1996) 16310.10.1103/PhysRevB.53.16310Google Scholar
13. Polian, A., Grimsditch, M. and Grzegory, I., J. Appl. Phys. 79 (1996) 3343.Google Scholar
14. Koide, Y., Itoh, H., Khan, M.R.H., Hiramatu, K., Sawaki, N., and Akasaki, I., J. Appl. Phys. 61 (1987) 4540.10.1063/1.338387Google Scholar
15. Khan, M.A., Skogman, R.A., Schulze, R.G., and Gershenzon, M., Appl. Phys. Lett. 43 (1983) 492.Google Scholar
16. Uchida, K., Watanabe, A., Yano, F., Koguchi, M., Tanaka, T., and Minagawa, S., Appl. Phys. 79 (1996) 3487.10.1063/1.361398Google Scholar
17. Keller, S., Keller, B. P., Wu, Y.-F., Heying, B., Kapolnek, D., Speck, J. S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 68 (1996) 1525.Google Scholar
18. Grandjean, N., Massies, J., and Leroux, M., Appl. Phys. Lett. 69 (1996) 2071.10.1063/1.116883Google Scholar
19. Kim, M. H., Sone, C., Yi, J. H., and Yoon, E., Appl. Phys. Lett. 71 (1996) 1228.10.1063/1.119859Google Scholar
20. Heinlein, C., Grepstad, J., Berge, T., and Riechert, H., Appl. Phys. Lett. 71 (1997) 341.10.1063/1.119532Google Scholar
21 Karsch, H., private communication.Google Scholar
22 Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon Press,New York, vol.1 (1985) p. 53.Google Scholar
23. Tombrello, T.A., Nucl. Instr. and Meth. B 83 (1993) 508.10.1016/0168-583X(93)95879-AGoogle Scholar
24. Ambacher, O., Angerer, H., Dimitrov, R., Rieger, W., Stutzmann, M., Dollinger, G., Bergmaier, A., phys. stat. sol. 159 (1997) 105.Google Scholar
25. Amano, H., Kito, M., Hiramatsu, K., Akasaki, I., Jap. J. Appl. Phys. 28 (1989) L2112.10.1143/JJAP.28.L2112Google Scholar
26. Nakamura, S., Iwasa, N., Senoh, M., Mukai, T., Jap. J. Appl. Phys. 31 (1992) 1258.10.1143/JJAP.31.1258Google Scholar
27. Brandt, M.S., Johnson, N.M., Molnar, R. L., Singh, R., Moustakas, T.D., Appl. Phys. Lett. 64 (1994) 2264.10.1063/1.111639Google Scholar
28. Vechten, I.A. Van, Zook, J.D., Hornig, R.D., Goldenberg, B., Jap. J. Appl. Phys. 31 (1992) 3662.10.1143/JJAP.31.3662Google Scholar