Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T13:57:09.077Z Has data issue: false hasContentIssue false

Encapsulation of Luminescent Silicon Nanocrystals within Mesoporous Silica Nanospheres: Synthesis and Effect on Photoluminescence

Published online by Cambridge University Press:  23 May 2011

Sarah Regli
Affiliation:
Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G G22, Canada
Joel A. Kelly
Affiliation:
Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G G22, Canada
Jonathan G.C. Veinot
Affiliation:
Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G G22, Canada
Get access

Abstract

Silicon nanocrystals (Si-NCs) are of significant research interest owing to their quantum confined photoluminescent (PL) properties and biological inertness. A promising application of these NCs is as the luminescent component in multifunctional biomedical technologies. In this report, we demonstrate the encapsulation of alkyl terminated Si-NCs within a mesoporous silica shell as a multifunctional imaging and drug delivery architecture. The Si-NC concentration was found to critically impact the nanoshell morphology. The impact of the encapsulation process on the Si-NC PL was studied, showing a blue-shift and decrease in intensity attributed to the oxidation of Si-NCs under basic conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L.T., Appl. Phys. Lett. 57, 10461048 (1997).Google Scholar
2. Cullis, A.G., Canham, L.T., and Calcott, D.J., J. Appl. Phys. 82, 909965 (1997).10.1063/1.366536Google Scholar
3. Buriak, J.M., Chem. Rev 102, 12721308 (2002).10.1021/cr000064sGoogle Scholar
4. Veinot, J.G.C., Chem. Commun. 41604168 (2006).Google Scholar
5. Bley, R.A. and Kauzlarich, S.M., J. Am. Chem. Soc. 118, 1246112462 (1996).Google Scholar
6. Holmes, J.D., Ziegler, K.J., Doty, R.C., Pell, L.E., Johnston, K.P., and Korgel, B.A., J. Am. Chem. Soc. 123, 37433748 (2001).Google Scholar
7. Li, X., He, Y., Talukdar, S.S., and Swihart, M.T., Langmuir 19, 84908496 (2003).10.1021/la034487bGoogle Scholar
8. Hessel, C.M., Henderson, E.J., and Veinot, J.G.C., Chem. Mater. 18, 61396146 (2006).Google Scholar
9. Hessel, C.M., Henderson, E.J., and Veinot, J.G.C., J. Phys. Chem. C. 111, 69566961 (2007).Google Scholar
10. Kelly, J.A., and Veinot, J.G.C., ACS Nano, 4, 46454656 (2010).Google Scholar
11. Clark, R.J., Dang, M.K., and Veinot, J.G.C., Langmuir, 26, 1565715664 (2010).Google Scholar
12. Sato, S. and Swihart, M.T., Chem. Mater. 18, 40834088 (2006).Google Scholar
13. Li, Z.F. and Ruckenstein, E., Nano Lett. 4, 14631467 (2004).10.1021/nl0492436Google Scholar
14. Erogbogbo, F., Yong, K-T., Roy, I., Xu, G., Prasad, P.N., and Swihart, M.T., ACS Nano, 2, 873878 (2008).Google Scholar
15. Hessel, C.M., Rasch, M.R., Hueso, J.L., Goodfellow, B.W., Akhavan, V.A., Puvanakrishnan, P., Tunnel, J.W., and Korgel, B.A., Small, 6, 20262034 (2010).Google Scholar
16. Kim, J., Lee, J.E., Lee, J., Yu, J.H., Kim, B.C., An, K., Hwang, Y., Shin, C.-H., Park, J.-G., . Kim, J., and Hyeon, T.. J. Am. Chem. Soc. 128, 688689 (2006).Google Scholar
17. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.-W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., and Schlenker, J.L., J. Am. Chem. Soc. 114, 1083410843 (1992).Google Scholar
18. Kim, J., Kim, H.S., Lee, N., Kim, T., Kim, H., Yu, T., Song, I.C., Moon, W.K., and Hyeon, T.. Angew. Chem. Int. Ed. 47, 84388441 (2008).Google Scholar
19. Hu, X., Zrazhevskiy, P., and Gao, X., Ann. Biomed. Eng. 37, 19601966 (2009).Google Scholar
20. Kirchner, C., Liedl, T., Kudera, S., Pellegrino, T., Javier, A.M., Gaub, H.E., Stölzle, S., Fertig, N., and Parak, W. J., Nano Lett. 5, 331338 (2005).Google Scholar
21. Fu, A., Gu, W., Larabell, C., and Alivisatos, A.P., Curr. Opin. Neurobiol. 15, 568575 (2005).Google Scholar
22. Kelly, J.A., Henderson, E.J., and Veinot, J.G.C., Chem. Commun. 46, 46454656 (2010).Google Scholar
23. Warner, J.H., Hoshino, A., Yamamoto, K., Tilley, R.D., Angew. Chem. Int. Ed. 44, 45504554 (2005).10.1002/anie.200501256Google Scholar
24. Pi, X.D., Mangolini, L., Campbell, S.A., and Kortshagen, U., Phys. Rev. B. 75, 08542310854235 (2007).Google Scholar
25. Erogbogbo, F., Yong, K-T., Hu, R., Law, W.-C., Ding, H., Chang, C.-W., Prasad, P.N., and Swihart, M.T. ACS Nano, 4, 51315138 (2010).Google Scholar