Published online by Cambridge University Press: 01 February 2011
In this paper, we demonstrated that Lead Zirconate Titanate (PZT) nanofibers can be used to harvest energy from dynamic loading and mechanical vibration. PZT nanofibers were fabricated by electrospinning process. SEM image of PZT nanofibers has shown that the average diameter of these fibers is about 150nm, which can be tuned from 50nm to 200 nm by varying the composition and viscosity of the precursor for electrospining. Titanium substrate with ZrO2 layer was used to collect the PZT nanofibers for the demonstration of energy harvesting from dynamic loading. The largest output voltage is 170mV under 0.5% strain; the frequency of the output voltage is the same as that of the input loading. Silicon substrate with trenches was used to collect the nanofibers for energy harvesting from vibration. The output voltage generated from 150Hz sinusoid vibration source has peak voltages of 64.9mV and -95.9mV. These experimental results suggest that PZT nanofibers have great potentials for energy harvesting from environments and being used as nanogenerators. Further study is under the way to optimize the design and improve the efficiency.