Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-29T11:45:14.141Z Has data issue: false hasContentIssue false

Energy landscape models for conduction and drift in phase change memory

Published online by Cambridge University Press:  19 December 2011

D. Ielmini*
Affiliation:
Dipartimento di Elettronica e Informazione and IU.NET, Politecnico di Milano, Piazza L. da Vinci, 32 – 20133 Milano, Italy.
D. Fugazza
Affiliation:
Dipartimento di Elettronica e Informazione and IU.NET, Politecnico di Milano, Piazza L. da Vinci, 32 – 20133 Milano, Italy.
M. Boniardi
Affiliation:
Dipartimento di Elettronica e Informazione and IU.NET, Politecnico di Milano, Piazza L. da Vinci, 32 – 20133 Milano, Italy.
Get access

Abstract

The physical modeling of carrier conduction and material-related effects such as crystallization, structural relaxation (SR), electromigration and ion migration in chalcogenide materials is a key challenge toward the development and scaling of phase change memory (PCM) devices. In particular, future scaling to 10 nm and below may require addressing variability effects in the programming, switching and retention properties of the cell. Variability is deeply linked with the nanometer-scale fluctuations of potential, atomic structure and material composition that affect conduction, structure relaxation and crystallization. Therefore, the physical modeling of conduction and reliability in PCM devices requires energy landscape models, describing the random fluctuations of e.g. the potential energy dictating the carrier transport and the free energy controlling the atomic rearrangement of the amorphous chalcogenide structure. This work discusses energy landscape models for a physical description of (i) electrical conduction in the amorphous phase and (ii) SR responsible for resistance drift in the amorphous chalcogenide phase. The link between the effective energy barrier in conduction and relaxation will be clarified, and analytical models for the prediction of drift depending on time and temperature will be introduced. These models provide the first comprehensive approach for a physics-based prediction of resistance window, resistance drift and their corresponding statistical variability within large PCM arrays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chung, H., Jeong, B., Min, B., Choi, Y., Cho, B-H., Shin, J., Kim, J., Sunwoo, J., Park, J-M., Wang, Q, Lee, Y-J., Cha, S, Kwon, D., Kim, S., Kim, S., Rho, Y., Park, M-H., Kim, J., Song, I., Jun, S., Lee, J., Kim, K., Lim, K-W., Chung, W-R., Choi, C, Cho, H., Shin, I., Jun, W., Hwang, S., Song, K-W., Lee, K, Chang, S-W., Cho, W-Y., Yoo, J-H., and Jun, Y-H., Proc. ISSCC 500 (2011).Google Scholar
[2] Villa, C., Mills, D., Barkley, G., Giduturi, H., Schippers, S., and Vimercati, D., Proc. ISSCC, 270 (2010).Google Scholar
[3] Sasago, Y., Kinoshita, M., Morikawa, T., Kurotsuchi, K., Hanzawa, S., Mine, T., Shima, A., Fujisaki, Y., Kume, H., Moriya, H., Takaura, N. and Torii, K., Symp. VLSI Tech. Dig. 24 (2009).Google Scholar
[4] Kau, D., Tang, S., Karpov, I. V., Dodge, R., Klehn, B., Kalb, J. A., Strand, J., Diaz, A., Leung, N., Wu, J., Lee, S., Langtry, T., Chang, K.-W., Papagianni, C., Lee, J., Hirst, J., Erra, S., Flores, E., Righos, N., Castro, H. and Spadini, G., IEDM Tech. Dig. 617 (2009).Google Scholar
[5] Fugazza, D., Ielmini, D., Lavizzari, S. and Lacaita, A. L., IEDM Tech. Dig. 723 (2009).Google Scholar
[6] Fugazza, D., Ielmini, D., Montemurro, G. and Lacaita, A.L., IEDM Tech. Dig. 652 (2010).Google Scholar
[7] Ielmini, D. and Zhang, Y., J. Appl. Phys. 102, 054517 (2007).Google Scholar
[8] Ielmini, D., Phys. Rev. B 78, 035308 (2008).Google Scholar
[9] Russo, U., Ielmini, D., Redaelli, A. and Lacaita, A. L., IEEE Trans. Electron Devices 53, 3032 (2006).Google Scholar
[10] Mantegazza, D., Ielmini, D., Varesi, E., Pirovano, A. and Lacaita, A.L., IEDM Tech. Dig. 311 (2007).Google Scholar
[11] Russo, U., Ielmini, D., Redaelli, A. and Lacaita, A. L., IEEE Trans. Electron Devices 55, 515 (2008).Google Scholar
[12] Ielmini, D., Mater. Res. Soc. Symp. Proc. 1251-H05-01 (2010).Google Scholar
[13] Boniardi, M., Ielmini, D., Lavizzari, S., Lacaita, A. L., Redaelli, A. and Pirovano, A., IEEE Trans. Electron Devices 27, 2690 (2010).Google Scholar
[14] Pirovano, A., Lacaita, A. L., Pellizzer, F., Kostylev, S. A., Benvenuti, A., Bez, R., IEEE Trans. Electron Devices 51, 714 (2004).Google Scholar
[15] Karpov, I. V., Mitra, M., Kau, D., Spadini, G., Kryukov, Y. A., Karpov, V. G., J. Appl. Phys. 102, 124503 (2007).Google Scholar
[16] Chik, K. P., Feng, S. Y. and Poon, S. K., Solid State Commun. 33, 1019 (1980).Google Scholar
[17] Conway, N. M. J., Ilie, A., Robertson, J. and Milne, W. I., Appl. Phys. Lett. 73, 2456 (1998).Google Scholar
[18] Snead, L. L. and Zinkle, S. J., Nucl. Instr. Methods B 191, 497 (2002).Google Scholar
[19] Roorda, S., Sinke, W. C., Poate, J. M., Jacobson, D. C., Dierker, S., Dennis, B. S., Eaglesham, D. J., Spaepen, F., and Fuoss, P., Phys. Rev. B 44, 3702 (1991)Google Scholar
[20] Koughia, K., Shakoor, Z., Kasap, S. O., and Marshall, J. M., J. Appl. Phys. 97, 033706 (2005).Google Scholar
[21] Tiwari, G., Ramanujan, R. V., Gonal, M. R., Prasad, R., Raj, P., Badguzar, B. P. and Goswami, G. L., Mater. Sci. Eng. A 304306, 499 (2001).Google Scholar
[22] Boniardi, M. and Ielmini, D., Appl. Phys. Lett. 98, 243506 (2011).Google Scholar
[23] Fritzsch, L. and Bobe, W., phys. stat. sol.(b) 58, k49 (1973).Google Scholar
[24] Owen, A. E. and Robertson, J. M., IEEE Trans. Electron Devices 20, 105 (1973).Google Scholar
[25] Shih, Y. H., Lee, M. H., Breitwisch, M., Cheek, R., Wu, J. Y., Rajendran, B., Zhu, Y., Lai, E. K., Chen, C. F., Cheng, H. Y., Schrott, A., Joseph, E., Dasaka, R., Raoux, S., Lung, H. L. and Lam, C., IEDM Tech. Dig. 753 (2009).Google Scholar
[26] Ielmini, D. and Zhang, Y., Appl. Phys. Lett. 90, 192102 (2007).Google Scholar
[27] Ielmini, D. and Boniardi, M., Appl. Phys. Lett. 94, 091906 (2009).Google Scholar
[28] Yelon, A., Movaghar, B., and Branz, H. M., Phys. Rev. B 46, 12244 (1992).Google Scholar
[29] Crandall, R. S., Phys. Rev. B 43, 4057 (1991).Google Scholar
[30] Kohara, S., Kato, K., Kimura, S., Tanaka, H., Usuki, T., Suzuya, K.,Tanaka, H., Moritomo, Y., Matsunaga, T., Yamada, N., et al. , Appl. Phys. Lett. 89, 201910 (2006).Google Scholar
[31] Caravati, S., Bernasconi, M., Kühne, T. D., Krack, M. and Parrinello, M., Appl. Phys. Lett. 91, 171906 (2007).Google Scholar
[32] Matsunaga, T., Akkola, J., Kohara, S., Honma, T., Kobayashi, K., Ikenaga, E., Jones, R. O., Yamada, N., Takata, M. and Kojima, R., Nature Mater. 10, 129 (2011).Google Scholar
[33] Agarwal, S. C. and Fritzsche, H., Phys. Rev. B 10, 4351 (1974).Google Scholar
[34] Pollak, M., J. Non Cryst. Solids 11, 1 (1972).Google Scholar
[35] Ambegaokar, V., Halperin, B. I. and Langer, J. S., Phys. Rev. B 4, 2612 (1971).Google Scholar
[36] Thomas, P., phys. stat. sol.(b) 71, 763 (1975).Google Scholar
[37] Hauser, J. J. and Staudinger, A., Phys. Rev. B 8, 607 (1973).Google Scholar
[38] Pollak, M. and Hauser, J. J., Phys. Rev. Lett. 31, 1304 (1973).Google Scholar
[39] Dyre, J. C., J. Appl. Phys 64, 2456 (1988).Google Scholar
[40] Tessler, N., Preezant, Y., Rappaport, N. and Roichman, Y., Adv. Mater 21, 1 (2009).Google Scholar
[41] Debenedetti, P. G. and Stillinger, F. H., Nature 410, 259 (2001).Google Scholar
[42] Ielmini, D., Lacaita, A. L. and Mantegazza, D., IEEE Trans. Electron Devices 54, 308 (2007).Google Scholar
[43] Ielmini, D., Sharma, D., Lavizzari, S. and Lacaita, A. L., IEEE Trans. Electron Devices 56, 1070 (2009).Google Scholar
[44] Boniardi, M., Redaelli, A., Pirovano, A., Tortorelli, I., Ielmini, D. and Pellizzer, F., J. Appl. Phys. 105, 084506 (2009).Google Scholar
[45] Ielmini, D., Lavizzari, S., Sharma, D. and Lacaita, A. L., Appl. Phys. Lett. 92, 193511 (2008).Google Scholar
[46] Lavizzari, S., Ielmini, D., Sharma, D. and Lacaita, A. L., IEEE Trans. Electron Devices 56, 1078 (2009).Google Scholar
[47] Ielmini, D., Lavizzari, S., Sharma, D. and Lacaita, A. L., IEDM Tech. Dig., 939 (2007).Google Scholar