Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T01:21:27.813Z Has data issue: false hasContentIssue false

Energy Transfer Dynamics and Impact Sensitivity

Published online by Cambridge University Press:  15 February 2011

Laurence E. Fried
Affiliation:
L-277, Chemistry and Materials Science DivisionLawrence Livermore National Laboratory Livermore, CA 94550
Anthony J. Ruggiero
Affiliation:
L-277, Chemistry and Materials Science DivisionLawrence Livermore National Laboratory Livermore, CA 94550
Get access

Abstract

In this paper we focus on the relation between impact sensitivity and energy transfer rates. When a crystal receives an impact, low frequency lattice vibrations (called phonons) are excited. Typical phonon frequencies are 0-200 cm-1. This energy must then be converted to vibron frequencies (1000–2000 cm-1) before bond breaking can occur. We derive a simple formula for the energy transfer rate in terms of the density of vibrational states and the vibron-phonon coupling. We are able to estimate the phonon upconversion rate in widely varying energetic materials such as TATB, HMX, and Pb styphnate by examining existing inelastic neutron scattering data. We find that the estimated energy transfer rates in pure unreacted material are strongly correlated with impact sensitivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Maradudin, A. A. and Fein, A. E., Phys. Rev., 128, 2589(1962).Google Scholar
[2] Della Valle, R.G., Fracassi, P. F., Righini, R., Califano, S., and Walmsley, S. H., Chem. Phys., 44, 189(1979).Google Scholar
[3] Kalus, J., J. Chim. Phys., 82, 1985.Google Scholar
[4] Califano, S., Lattice Dynamics of Molecular Crystals, Lecture Notes in Chemistry, Vol.26, Springer-Verlag, Berlin, 1981.Google Scholar
[5] Califano, S., Laser Optics of Condensed Matter, Vol.2, Garmite, E. et al. Eds., Plenum Press, New York, 1991 Google Scholar
[6] Procacci, P., Cardini, G., Righini, R., and Califano, S., Phys. Rev. B., 45, 2113(1992).CrossRefGoogle Scholar
[7] Holian, B. L., J. Chem. Phys., 84, 3138(1986).Google Scholar
[8] Dlott, D. D. and Fayer, M. D., J. Chem. Phys., 92, 3798(1990).Google Scholar
[9] Kim, H. and Dlott, D. D., J. Chem. Phys., 93, 1695(1990).Google Scholar
[10] Kim, H. and Dlott, D. D., J. Chem. Phys., 94, 8203(1991).CrossRefGoogle Scholar
[11] Zerilli, F. J. and Toton, E. D., Phys. Rev. B, 29, 5891(1984).Google Scholar
[12] Bokhenkov, E. L., Natkaniec, I., and Sheka, E. F., Sov. Phys. JETP, 43, 536(1976).Google Scholar
[13] Belushkin, A. V., Bokhenkov, E. L., Kolesnikov, A. I., Natkaniec, I., Righini, R., and Sheka, E. F., Soy. Phys. Sol. State, 23, 1529(1981).Google Scholar
[14] Dlott, D., Annu. Rev. Phys. Chem., 37, 157(1986).CrossRefGoogle Scholar
[15] Stewart, J. J. P., J. Comp. Chem., 10, 209 (1989);Google Scholar
Stewart, J. J. P., J. Comp. Chem. 10, p 221.Google Scholar
[16] Boutin, H. P., Prask, H. J., and Trevino, S., Picatinny Arsenal Rep., 1965.Google Scholar
[17] Dobratz, B. M. and Crawford, P. C., LLNL Explosives Handbook, UCRL-52997, 1985.Google Scholar
[18] Cady, H. H. and Smith, L. C., “Studies on the polymorphs of HMX”, Los Alamos Scientific Laboratory Reports, LAMS-2652 (1962).Google Scholar
[19] Meyer, R., Explosives, 1987, VCH, Weinheim.Google Scholar
[20] Gupta, V. D. and Deopura, B. L., Mol. Phys., 19, 589(1970).Google Scholar