Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T07:03:21.915Z Has data issue: false hasContentIssue false

Engineered Nanocomposites for Capturing and Converting Carbon Dioxide into Useful Chemicals

Published online by Cambridge University Press:  15 June 2012

Michael Ashley
Affiliation:
Center for Nano Science and Technology, Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. Department of Chemical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
Punnamchandar Ramidi
Affiliation:
Department of Chemistry, University of Arkansas, Little Rock, AR 72204, USA.
Timothy Bontrager
Affiliation:
Center for Nano Science and Technology, Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
Charles Magiera
Affiliation:
Department of Chemical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
Anindya Ghosh*
Affiliation:
Department of Chemistry, University of Arkansas, Little Rock, AR 72204, USA.
Alexandru S. Biris
Affiliation:
Nanotechnology Center, University of Arkansas, Little Rock, AR 72204, USA.
Ilker S. Bayer
Affiliation:
Center for Biomolecular Nanotechnologies, Smart Materials Platform, Italian Institute of Technology, Lecce 73010, Italy.
Abhijit Biswas*
Affiliation:
Center for Nano Science and Technology, Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
*
*Corresponding authors: abiswas@nd.edu (Abhijit Biswas); axghosh@ualr.edu (Anindya Ghosh)
*Corresponding authors: abiswas@nd.edu (Abhijit Biswas); axghosh@ualr.edu (Anindya Ghosh)
Get access

Abstract

We describe a simple drop-cast processing method to synthesize multicomponent polymer-based nanocomposites for carbon dioxide (CO2) capture and conversion into stable carbonates. These multicomponent nanocomposites are made of combination of different metal oxide nanoparticles and catalysts in a porous polymer matrix. The formulation includes the combination of titanium dioxide and magnesium oxide, ruthenium oxide, and iron oxide where each metal oxide exhibits its own catalytic function of trapping carbon dioxide. Such a material system provides numerous localized catalytically active hot reaction spots generated by the dispersed multifunctional oxide nanoparticles that react with CO2 when exposed to the gas stream and instantaneously convert the captured carbon into carbonates. Finally, we discuss our ongoing work on the possibility of converting captured-carbon-formed-carbonate into useful products/commodities such as methane, methanol and formic acid. The integration of polymer materials with catalytically active nanomaterials shows a promising strategy for CO2 capture and conversion into useful products towards achieving a sustainable energy future.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Equal Contributions

References

REFERENCES

1. Stevens, R. W. Jr., Siriwardane, R. V., Logan, J., Energy Fuels 22, 3070 (2008).Google Scholar
2. Hu, X., Cong, H., Shen, Y., Radosz, M., Ind. Eng. Chem. Res. 46, 1547 (2007).Google Scholar
3. Hosseini, S. S., Li, Y., Chung, T.-S., Liu, Y., J. Membr. Sci. 302, 207 (2007).Google Scholar
4. Matteucci, S., Kusuma, V. A., Kelman, S. D., Freeman, B. D., Polymer 49, 1659 (2008).Google Scholar
5. Scholes, C. A., Kentish, S. E., Stevens, G. W., Recent Patents Chem. Eng. 1, 52 (2008).Google Scholar
6. Hedin, N., Chen, L., Laaksonen, A., Nanoscale 2, 1819 (2010).Google Scholar
7. Biswas, A., Tokoly, T., Wang, T., Ramidi, P., Ghosh, A., Dervishi, E., Watanabe, F., Biris, A. S., Bayer, I. S., and Norton, M. G., Chem. Phys. Lett. 508, 276 (2011).Google Scholar
8. Ramidi, P., Sullivan, S. Z., Gartia, Y., Munshi, P., Griffin, W. O., Darsey, J. A., Biswas, A., Shaikh, A. U. and Ghosh, Anindya, Ind. Eng. Chem. Res. 50, 7800 (2011).Google Scholar
9. Ramidi, P., Munshi, P., Gartia, Y., Pulla, S., Biris, A. S., Paul, A. and Ghosh, A., Chem. Phys. Lett. 512, 273 (2011).Google Scholar
10. Xiao, Y., Low, B. T., Hosseini, S. S., Chung, T. S., Paul, D. R., Prog. Polym. Sci. 34, 561 (2009).Google Scholar
11. Basu, S., Khan, A. L., Cano-Odena, A., Liu, C., Vankelecom, I. F. J., Chem. Soc. Rev. 39, 750 (2010).Google Scholar
12. Cong, H., Hu, X., Radosz, M., and Shen, Y., Ind. Eng. Chem. Res. 46, 2567 (2007).Google Scholar
13. Rubal, M., Wilkins, C. W. Jr., Cassidy, P. E., Lansford, C., Yamada, Y., Polym. Adv. Technol. 19, 1033, (2008).Google Scholar
14. Cong, H., Radosz, M., Towler, B. F., Shen, Y., Sep. Purif. Technol. 55, 281 (2007).Google Scholar
15. Ahn, J., Chung, W.-J., Pinnau, I., Guiver, M. D., J. Membr. Sci. 314, 123 (2008).Google Scholar
16. Rahman, M. A., Oomori, T., Anal. Sci. 25, 153 (2009).Google Scholar