No CrossRef data available.
Published online by Cambridge University Press: 17 April 2019
We develop experimentally and theoretically plasmonic and photonic crystals for enhancing thin film silicon solar cells. Thin film amorphous silicon (a-Si:H) solar cells suffer from decreased absorption of red and near-infrared photons, where the photon absorption length is large. Simulations predict maximal light absorption for a pitch of 700-800 nm for photonic crystal hole arrays in silver or ZnO/Ag back reflectors, with absorption increases of ~12%. The photonic crystal improves over the ideal randomly roughened back reflector (or the ‘4n2 limit’) at wavelengths near the band edge. We fabricated metallic photonic crystal back-reflectors using photolithography and reactive-ion etching. We conformally deposited a-Si:H solar cells on triangular lattice hole arrays of pitch 760 nm on silver back-reflectors. Electron microscopy demonstrates excellent long range periodicity and conformal a-Si:H growth. The measured quantum efficiency increases by 7-8 %, relative to a flat reflector reference device, with enhancement factors exceeding 6 at near-infrared wavelengths. The photonic crystal back reflector strongly diffracts light and increases optical path lengths of solar photons.