Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T01:11:33.275Z Has data issue: false hasContentIssue false

Enhanced Electron Transport in Dye-Sensitized Solar Cells Using Short ZnO Nanotips on A Mirco-textured Metal Anode

Published online by Cambridge University Press:  31 January 2011

Zhenzhen Yang
Affiliation:
yangzhzh02@gmail.com, Northern Illinois University, Chemistry, Dekalb, Illinois, United States
Tao Xu
Affiliation:
txu@niu.edu, Northern Illinois University, Chemistry, Dekalb, Illinois, United States
Ulrich Welp
Affiliation:
Northern Illinois University, Chemistry, Dekalb, Illinois, United States
Wai Kwong Kwok
Affiliation:
Northern Illinois University, Chemistry, Dekalb, Illinois, United States
Get access

Abstract

Much attention has been directed towards the enhancement of electron transport in dye-sensitized solar cells (DSSC) using one-dimensional nanoarchitectured semiconductors. However, the improvement resulting from these ordered 1-D nanostructured electrodes is often offset or diminished by the deterioration in other device parameters intrinsically associated with the use of these 1-D nanostrucutres, such as the two-sided effects of the length of the nanowires impacting the series resistance and roughness factor. In this work, we mitigate this problem by allocating part of the roughness factor to the collecting anode instead of imparting all the roughness factors onto the semiconductor layer. A microscopically rough Zn microtip array is used as an anode on which ZnO nanotips are grown to serve as the semiconductor component in a DSSC. For the same surface roughness factor, our Zn microtip/ZnO nanotip DSSC exhibits an enhanced fill factor compared to a corresponding planar anode supported ZnO nanowire DSSC. In addition, the open circuit voltage of the Zn-microtip|ZnO-nanotip DSSC is also enhanced due to a favorable band shift at the Zn-ZnO interface, which raises the quasi Fermi level of the semiconductor and consequently enlarges the energy gap between the quasi Fermi level of ZnO and the redox species. The overall improvement demonstrates a new fundamental approach to enhance the efficiency of dye-sensitized solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 O'regan, B. and Gräuml;tzel, M., Nature 353, 737 (1991).Google Scholar
2 Grätzel, M., Nature 421, 586 (2003).Google Scholar
3 Nazeeruddin, M. K., Angelis, F. De, Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Takeru, B., and Grätzel, M. G., J. Am. Chem. Soc. 127, 16835 (2005).Google Scholar
4 Martinson, A. B. F., Elam, J. W., Hupp, J. T., and Pellin, M. J., Nano Lett. 7, 2183 (2007).Google Scholar
5 Coleman, Charles C., “Metal-Semiconductor contacts”, Modern Physics for Semiconductor Science (Weinheim: Wiley-VCH Verlag GmbH&Co.KGaA, Weinheim, 2008). pp. 275280.Google Scholar
6 Kuan, C. Y., Chou, J. M., Leu, I. C., and Hon, M. H., Electrochem. Commun. 9, 2093 (2007); C. Y. Kuan, J. M. Chou, I. C. Leu, and M. H. Hon, J. Mater. Res. 23, 1163 (2008).Google Scholar
7 Keis, K., Lindgren, J., Lindquist, S. E., Hagfeldt, A., Langmuir 16, 4688 (2000).Google Scholar
8 Jiang, C. Y., Sun, X. W., Lo, G. Q., Kwong, D. L., and Wang, J. X., Appl. Phys. Lett. 90, 3 (2007).Google Scholar
9 Law, M., Greene, L. E., Johnson, J. C., Saykally, R., Yang, P. D., Nat. Mater. 4, 455 (2005).Google Scholar
10 Cheng, H. M., Chiu, W. H., Lee, C. H., Tsai, S. Y., and Hsieh, W. F., J. Phys. Chem. C 112, 16359 (2008).Google Scholar
11 Pasquier, A. Du, Chen, H. H., Lu, Y. C., Appl. Phys. Lett. 89, 253513 (2006).Google Scholar
12 Anderson, P. A., Phys. Rev. 57, 122 (1940).Google Scholar
13 Wang, X. D., Summers, C. J., and Wang, Z. L., Appl. Phys. Lett. 86, 3 (2005).Google Scholar
14 Sun, Z. H., Wang, C. X., Yang, J. X., Zhao, B., Lombardi, J. R., J. Phys. Chem. C 112, 6093 (2008).Google Scholar