Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T14:17:41.393Z Has data issue: false hasContentIssue false

Enhanced Light Emission at Self-assembled GaN Inversion Domain Boundary

Published online by Cambridge University Press:  20 June 2011

Mei-Chun Liu
Affiliation:
Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
Yuh-Jen Cheng
Affiliation:
Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
Jet-Rung Chang
Affiliation:
Institute of Electronics, National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 300, Taiwan
Chun-Yen Chang
Affiliation:
Institute of Electronics, National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 300, Taiwan
Get access

Abstract

We report the fabrication of GaN lateral polarity inversion heterostructure with self assembled crystalline inversion domain boundaries (IDBs). The sample was fabricated by two step molecular-beam epitaxy (MBE) with microlithography patterning in between to define IDBs. Despite the use of circular pattern, hexagonal crystalline IDBs were self assembled from the circular pattern during the second MBE growth. Both cathodoluminescent (CL) and photoluminescent (PL) measurements show a significant enhanced emission at IDBs and in particular at hexagonal corners. The ability to fabricate self assembled crystalline IDBs and its enhanced emission property can be useful in optoelectronic applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mukai, T., Takekawa, K., and Nakamura, S., Jpn. J. Appl. Phys., Part 2 37, L839 (1998).Google Scholar
2. Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., and Hilsenbeck, J., J. Appl. Phys. 85, 3222 (1999).Google Scholar
3. Stutzmann, M., Ambacher, O., Eickhoff, M., Karrer, U., Lima Pimenta, A., Neuberger, R., Schalwig, J., Dimitrov, R., Schuck, P., and Grober, R., Phys. Status Solidi B 288, 505 (2001).Google Scholar
4. Iwamoto, C., Shen, X. Q., Okumura, H., Matuhata, H., and Ikuhara, Y., Appl. Phys. Lett. 79, 3941 (2001).Google Scholar
5. Liu, F., Collazo, R., Mita, S., Sitar, Z., Duscher, G., and Pennycook, S. J., Appl. Phys. Lett. 91, 203115 (2007).Google Scholar
6. Northrup, J. E., Neugebauer, J., and Romano, L. T., Phys. Rev. Lett. 77, 103 (1996).Google Scholar
7. Fiorentini, V., Appl. Phys. Lett. 82, 1182 (2003).Google Scholar
8. Rodriguez, B. J., Gruverman, A., Kingon, A. I., Nemanich, R. J., and Ambacher, O., Appl. Phys. Lett. 80, 4166 (2002).Google Scholar
9. Katayama, Ryuji, Kuge, Yoshihiro, Onabe, Kentaro, Matsushita, Tomonori and Kondo, Takashi, Appl. Phys. Lett. 89, 231910 (2006).Google Scholar
10. Schuck, P. J., Mason, M. D., Grober, R. D., Ambacher, O., Lima, A. P., Miskys, C., Dimitrov, R., and Stutzmann, M., Appl. Phys. Lett. 79, 952 (2001).Google Scholar
11. Shen, X. Q., Ide, T., Cho, S. H., Shimizu, M., Hara, S., and Okumura, H., Appl. Phys. Lett. 77, 4013 (2000).Google Scholar
12. Huang, D., Visconti, P., Jones, K. M., Reshchikov, M. A., Yun, F., Baski, A. A., King, T., and Morkoc, H., Appl. Phys. Lett. 78, 4145 (2001).Google Scholar
13. Smith, A. R., Feenstra, R. M., Greve, D. W., Shin, M.-S., and Skowronski, M., Neugebauer, J., and Northrup, J. E., Appl. Phys. Lett. 72, 2114 (2001).Google Scholar