Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T10:14:38.407Z Has data issue: false hasContentIssue false

Enhanced Photovoltaic Response in Ionically Self-Assembled Monolayer Thin-Film Devices

Published online by Cambridge University Press:  15 March 2011

Daniela Marciu
Affiliation:
Luna Innovations, Inc., P. O. Box 11704 Blacksburg, VA 24062-1704, U.S.A.
Michael B. Miller
Affiliation:
Luna Innovations, Inc., P. O. Box 11704 Blacksburg, VA 24062-1704, U.S.A.
Carrie Kozikowski
Affiliation:
Luna Innovations, Inc., P. O. Box 11704 Blacksburg, VA 24062-1704, U.S.A.
J. R. Heflin
Affiliation:
Department of Physics, Virginia Tech Blacksburg, VA 24061-0435, U.S.A.
Sung Cho
Affiliation:
Department of Physics, Virginia Tech Blacksburg, VA 24061-0435, U.S.A.
Beth A. Reid
Affiliation:
Department of Physics, Virginia Tech Blacksburg, VA 24061-0435, U.S.A.
Kaori Kuroda
Affiliation:
Department of Physics, Virginia Tech Blacksburg, VA 24061-0435, U.S.A.
Willi Graupner
Affiliation:
Department of Physics, Virginia Tech Blacksburg, VA 24061-0435, U.S.A.
Hong Wang
Affiliation:
Department of Chemistry, Virginia Tech Blacksburg, VA 24061-0212, U.S.A.
Harry W. Gibson
Affiliation:
Department of Chemistry, Virginia Tech Blacksburg, VA 24061-0212, U.S.A.
Richey M. Davis
Affiliation:
Department of Chemical Engineering, Virginia Tech Blacksburg, VA 24061-0211, U.S.A.
Get access

Abstract

We describe detailed studies of ionically self-assembled monolayer (ISAM) photovoltaic (PV) devices incorporating various electron acceptor materials, such as fullerenes and phthalocyanines. Excitons are generated when the conducting polymer is irradiated, and the electron acceptors aid in dissociating the electron/hole pairs before they can radiatively recombine, thus improving the efficiency of the PV process. The ISAM technique allows the deposition of conducting polymer and electron acceptor materials in alternating layers of nanometer-scale thickness. This ensures that every photoexcited electron-hole pair is in proximity to an electron acceptor, thus minimizing electron-hole recombination and increasing the photocurrent. The individual thickness of each monolayer and the interpenetration of adjacent layers can be precisely controlled through the parameters of the electrolyte solutions. Using the ISAM technique, we have demonstrated that it is possible to create ultrathin films (100 nm) of PV material that have enhanced efficiencies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sariciftci, N. S., Smilowitz, L., Heeger, A. J. and Wudl, F., Science 258, 1474 (1992).Google Scholar
2. Smilowitz, L., Sariciftci, N. S., Wu, R., Gettinger, C., Heeger, A. J., and Wudl, F., Phys. Rev. B 47, 13835 (1993).Google Scholar
3. Halls, J.J.M., Walsh, C.A., Grenham, N.C., Marseglia, E.A., Friend, R., Moratti, S.C., Holmes, A.B., Nature 376, 498 (1995).Google Scholar
4. Yu, G., Heeger, A.J., J. Appl. Phys. 78, 4510 (1995).Google Scholar
5. Matoussi, H., Rubner, M. F., Zhou, F., Kumar, J., Tripathy, S. K., Chiang, L. Y., Appl. Phys. Lett. 77, 1540 (2000).Google Scholar
6. Durstock, M. F., Taylor, B., Spry, R. J., Chiang, L., Reulbach, S., Heitfeld, K., Baur, J. W., Synthetic Metals 116, 373 (2001).Google Scholar
7. Halls, J.J.M., Pichler, K., Friend, R.H., Moratti, S.C., Holmes, A.B., Appl. Phys. Lett. 68, 3120 (1996).Google Scholar
8. Fou, A. C., Onitsuka, O., Ferreira, M., Rubner, M. F., and Hsieh, B. R., J. Appl. Phys. 79, 7501 (1996).Google Scholar
9. Denton, F. R. III, Lahti, P. M., Karasz, F. E., J. Polym. Sci. Part A: Polym. Chem. 30, 2223 (1992).Google Scholar
10.See, for example, Decher, G., Science 277, 1232 (1997).Google Scholar
11. Marciu, D., Miller, M. B., Ritter, A. L., Murray, M. A., Neyman, P. J., Graupner, W., Heflin, J. R., Wang, H., Gibson, H. W., Davis, R. M., SPIE Proc. 3938, 169 (2000).Google Scholar
12. Brands, C., Piok, T., Neyman, P. J., Erlacher, A., Soman, C., Murray, M.A., Schroeder, R., Heflin, J. R., Graupner, W., Marciu, D., Drake, A., Miller, M. B., Wang, H., Gibson, H. W., Dorn, H. C., Leising, G., Guzy, M., Davis, R. M., SPIE Proc. 3937, 5162 (2000).Google Scholar