Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T11:31:05.309Z Has data issue: false hasContentIssue false

Enhancement of Plasmon Propagation Length Using Metamaterials

Published online by Cambridge University Press:  26 February 2011

David Brandon
Affiliation:
DBMcNeil@UNT.edu, University of North Texas, Physics, 211 Ave. A, Denton, TX, 76203, United States
Arkadii Krokhin
Affiliation:
Arkady@UNT.edu, University of North Texas, Physics, 211 Avenue A, Denton, TX, 76203, United States
Arup Neogi
Affiliation:
Arup@UNT.edu, University of North Texas, Physics, 211 Avenue A, Denton, TX, 76203, United States
Get access

Abstract

We propose using a strongly anisotropic dielectric as a substrate for a thin metallic film along the boundary of which surface plasmon excitations may propagate. We show that the propagation range of surface plasmons is increased if the substrate is a birefringent dielectric crystal with a properly oriented optical axis. The increase of the propagation range depends on the degree of anisotropy, and, consequently, it turns out to be small for substrates of natural optical crystals, where anisotropy is weak. However, in specially designed photonic crystals, the anisotropy may be very strong, thus leading to appreciable increase of the propagation range. A photonic-crystal substrate, being a medium with nonlinear dispersion, also affects the dispersion law of the surface plasmon. All these effects may be used in order to increase the efficiency of modern plasmonic and optoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Raether, H., Surface Plasmons (Springer-Verlag, Berlin, 1988).Google Scholar
2. McGurn, A.R. and Maradudin, A.A., Phys. Rev. B 48, 17516 (1993).Google Scholar
3. Barnes, W. L., Dereux, A., and Ebbesen, T. W., Nature (London) 424, 824 (2003).Google Scholar
4. Zayats, A. V., Smolyaninov, I. I., and Maradudin, A. A., Phys. Rep. 408, 131 (2005).Google Scholar
5. Ditlbacher, H., et al., Phys. Rev. Lett. 95, 257403 (2005).Google Scholar
6. Smolyanino, I.I., Elliott, J., Zayats, A.V, and Davis, C. C., Phys. Rev. Lett. 94, 057401 (2005).Google Scholar
7. Shin, H. and Fan, S., Phys. Rev. Lett. 96, 073907 (2006).Google Scholar
8. Weeber, J.C., Krenn, J. R., Dereux, A., Lamprecht, B., Lacroute, Y., and Goudonnet, J.P., Phys. Rev. B 64, 045411 (2001).Google Scholar
9. Lamprecht, B., Krenn, J.R., Schider, G., Ditlbacher, H., Salerno, M., Felidj, N., Leitner, A., and Aussenegg, F.R., Appl. Phys. Lett. 79, 51 (2001).Google Scholar
10. Weeber, J.C., Gonz’alez, M.U., Baudrion, A.L., and Dereux, A., Appl. Phys. Lett. 87, 221101, (2005).Google Scholar
11. Charbonneau, R., Lahoud, N., Mattiussi, G., and Berini, P., Opt. Express 13, 977 (2005).Google Scholar
12. Sarid, D., Phys. Rev. Lett. 47, 1927 (1981).Google Scholar
13. Berini, P., Phys. Rev. B 61, 10484 (2000); ibid. 63, 125417(2001).Google Scholar
14. Noginov, M. A., Zhu, G., Bahoura, M., Adegoke, J., Small, C. E., Ritzo, B. A., Drachev, V. P., and Shalaev, V. M., Opt. Lett. 31, 3022 (2006).Google Scholar
15. Nikolajsen, T., Leosson, K., Salakhutdinov, I., and Bozhevolnyi, S. I., Appl. Phys. Lett. 82, 668 (2003).Google Scholar
16. Nikolajsen, T., Leosson, K., and Bozhevolnyi, S. I., Appl. Phys. Lett. 85, 5833 (2004).Google Scholar
17. Boltasseva, A., Nikolajsen, T., Leosson, K., Kjaer, K., Larsen, M.S., and Bozhevolnyi, S.I., J. Lightwave Technol. 23, 413 (2005).Google Scholar
18. Boltasseva, A., Bozhevolnyi, S.I., Søndergaard, T., Nikolajsen, T., and Leosson, K., Opt. Express 13, 4237 (2005).Google Scholar
19. Charbonneau, R., Lahoud, N., Mattiussi, G., and Berini, P., Opt. Express 13, 977 (2005).Google Scholar
20. Berini, P., Charbonneau, R., Lahoud, N., and Mattiussi, G., J. Appl. Phys. 98, 043109 (2005).Google Scholar
21. Degiron, A. and Smith, D. R., Opt. Express 14, 1611 (2006).Google Scholar
22. Lu, Q.J. and Maradudin, A.A., Phys. Rev. B 42, 11159 (1990)Google Scholar
23. Novikov, I.V. and Maradudin, A.A., Phys. Rev. B 66, 035403 (2002).Google Scholar
24. Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., and Ebbesen, T.W., Phys. Rev. Lett. 95, 046802 (2005).Google Scholar
25. Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J.-Y., and Ebbesen, T.W., Nature 440, 508 (2006).Google Scholar
26. Halevi, P., Krokhin, A.A., and Arriaga, J., Phys. Rev. Lett. 82, 719 (1999).Google Scholar
27. Podolskiy, V. A. and Narimanov, E.E., Phys. Rev. B 71, 201101(R) (2005).Google Scholar
28. Artigas, D. and Torner, L., Phys. Rev. Lett. 94 013901 (2005).Google Scholar
29. Roadmap to Photonic Crystals, ed. by Noda, S. and Baba, T. (Kluwer, Boston, 2003).Google Scholar
30. Skorobogatiy, M. and Kabashin, A.V., Appl. Phys. Lett. 89, 143518 920060.Google Scholar
31. Fedorov, G., Maslovski, S.I., Dorofeenko, A.V., Vinogradov, A.P., Ryzhikov, I.A., and Tretyakov, S.A., Phys. Rev. B 73, 035409 (2006).Google Scholar