Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T14:12:35.589Z Has data issue: false hasContentIssue false

Enhancement of the CMR Effect Near Room Temperature by Defects and Structural Transitions in La1−xyCaxSryMnO3

Published online by Cambridge University Press:  10 February 2011

S. Kolesnik
Affiliation:
Department of Physics, Northern Illinois University, DeKalb, IL 60115
B. Dabrowski
Affiliation:
Department of Physics, Northern Illinois University, DeKalb, IL 60115
Z. Bukowski
Affiliation:
Department of Physics, Northern Illinois University, DeKalb, IL 60115
J. Mais
Affiliation:
Department of Physics, Northern Illinois University, DeKalb, IL 60115
Get access

Abstract

We have studied magnetoresistance of a series of La1−xSrxMnO3 and La1−xyCaxSryMnO3 samples, for which structural and ferromagnetic transformation temperatures are in close proximity. On cooling in zero magnetic field, we observe a rapid increase of resistivity just above TC for La1−xSrxMnO3 samples with x < 0.1425 and x ≤ 0.1725 due to the O*-O' and R-O* - structural phase transformations, respectively. This increase is followed by a rapid decrease due to the ferromagnetic transition. The applied magnetic field significantly shifts the ferromagnetic transition to higher temperatures and suppresses the structure-related resistivity increase. We show that a combination of structural and ferromagnetic transitions gives rise to an enhancement of the negative magnetoresistance due to strong spin-lattice coupling. By choosing a proper composition, the enhancement can be optimized to appear in relatively low magnetic fields. A proper selection of Sr and Ca contents in La1−xyCaxSryMnO3 and preparation conditions leads to an enhancement of the magnetoresistance effect at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zener, C., Phys. Rev. 82, 403 (1951).Google Scholar
2. Anderson, P. W. and Hasegawa, H., Phys. Rev. 100, 675 (1955).Google Scholar
3. Goodenough, J.B., Magnetism and chemical bond, Wiley, New York, 1963.Google Scholar
4. Dabrowski, B., Xiong, X., Bukowski, Z, Dybzinski, R., Klamut, P. W., Siewenie, J. E., Chmaissem, O., Schaffer, J., and Kimball, C. W., Phys. Rev. B 60, 7006 (1999).Google Scholar
5. Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., Tokura, Y., Phys. Rev. B 51, 14103 (1995).Google Scholar
6. Kawano, H., Kajimoto, R., and Yoshizawa, H., Phys. Rev. B 53, R14709 (1996).Google Scholar
7. Wollan, E. O. and Koehler, W. C., Phys. Rev. 100, 545 (1955).Google Scholar
8. Elemans, J. B. A. A., Laar, B. Van, Veen, K. R. Van Der, and Loopstra, B. O., J. Solid State Chem. 3, 238 (1971).Google Scholar
9. Huang, Q., Santoro, A., Lynn, J. W., Erwin, R. W., Borchers, J. A., Peng, J. L., and Greene, R. L., Phys. Rev. B 55, 14987 (1997).Google Scholar
10. Rodriguez-Carvajal, J., Hennion, M., Moussa, F., Moudden, A.H., Pinsard, L., and Revcolevschi, A., Phys. Rev. B 57, R3189 (1998).Google Scholar
11. Dabrowski, B., Dybzinski, R., Bukowski, Z., Chmaissem, O., and Jorgensen, J.D., J. Solid State Chem. 146, 448 (1999).Google Scholar
12. Mitchell, J. F., Argyriou, D. N., Potter, C. D., Hinks, D. G., Jorgensen, J. D., and Bader, S. D., Phys.Rev. B 54, 6172 (1996).Google Scholar
13. Moritomo, Y., Asamitsu, A., and Tokura, Y., Phys. Rev. B 56, 12190 (1997).Google Scholar
14. Bukowski, Z. et al. , J. Appl. Phys., to be published.Google Scholar