Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T14:14:14.340Z Has data issue: false hasContentIssue false

Enhancements in Two Dimensional Electron Gas Density and Mobility in δ-Doped AiGaAs Heterostructures

Published online by Cambridge University Press:  26 February 2011

J. E. Cunningham
Affiliation:
AT&T Bell Laboratories, Crawfords Corner Rd., Holmdel, NJ 07733
G. L Timp
Affiliation:
AT&T Bell Laboratories, Crawfords Corner Rd., Holmdel, NJ 07733
E. F. Schubert
Affiliation:
AT&T Bell Laboratories, Crawfords Corner Rd., Holmdel, NJ 07733
W. T. Tsang
Affiliation:
AT&T Bell Laboratories, Crawfords Corner Rd., Holmdel, NJ 07733
P. G. N. DeVegvar
Affiliation:
AT&T Bell Laboratories, Crawfords Corner Rd., Holmdel, NJ 07733
T. H. Chiu
Affiliation:
AT&T Bell Laboratories, Crawfords Corner Rd., Holmdel, NJ 07733
E. Agyekum
Affiliation:
AT&T Bell Laboratories, Crawfords Corner Rd., Holmdel, NJ 07733
Get access

Abstract

We report our recent investigations of a new structure formed by b-doping the barrier of an AlGaAs/GaAs heterostructure. In this new structure we have observed both a mobility of 1.9×lO6cm2/Vsec and the fractional quantum hall effect. We compare low temperature mobilities and densities achieved with the δ-doped heterostructure with corresponding high values reported in the literature for the homogeneously- doped heterostructure. We show that systematic enhancements in both density and mobility occur in the b-doped heterostructure. By δ-doping both barriers of a quantum well we have also achieved electron concentrations of 4×1012cm -2 in the well.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Dingle, R., Stormer, H. L., Gossard, A. C. and Wiegmann, W., Appl. Phys. Lett. 33, 665 (1978).Google Scholar
[2]L Stormer, H., Tsui, D. C. and Gossard, A. C., Phys. Rev. Lett. 48, 1599 (1982).Google Scholar
[3]English, J. H., Gossard, A. C., Stormer, H. L. and K Baldwin, W., Appl. Phys. Lett. 50, 1826 (1987).Google Scholar
[4]Foxon, C. T., Harris, J. J., Wheeler, R. G. and Lacklison, D. E., J. Vac. Sci. Technol. B 4, 511 (1986).Google Scholar
[5]Hirajkawa, K, Sakaki, J. and Yoshima, J., Appl. Phys. Lett. 45, 253 (1984).Google Scholar
[6]Cunningham, J. E., Tsang, S. T., Schubert, E. F., Timp, G. T., Chiu, T. H., Chang, A., Agyekum, E. and Ditzenberger, J. A., J. Vac. Sci. Technol. B4, in press.Google Scholar
[7]Cunningham, J. E. and Agyekum, E., unpublished.Google Scholar
[8]Kuo, T. Y., Cunningham, J. E., Schubert, E. F., Tsang, W. T., Chiu, T. H., Ren, F., Fonstad, C. G., J. Appl. Phys. submitted.Google Scholar
[9]Hiyamizu, K, Saito, J., Nanbu, K and Ishikawa, T., Jpn. J. Appl. Phys. 22, 1609 (1983).Google Scholar
[10]Mendez, E. E., Price, P. J., and Heiblum, M., Appl. Phys. Lett. 45, 294 (1984).Google Scholar
[11]Walukiewicz, W., Ruda, H. E., Lagowski, J. and Gatos, J. C., Phys. Rev. B 30, 4571 (1984).Google Scholar
[12]Weimann, G. and Schlapp, W., Appl. Phys. Lett. 46, 411 (1985).Google Scholar
[13]Heiblum, M., Mendez, E. E. and Stern, F., Appl. Phys. Lett. 45, 294 (1984).Google Scholar
[14]Hwang, J. C. M., Kastalsky, A., Stormer, H. L. and Keramidas, V. G., Appl. Phys. Lett. 44, 802 (1984).Google Scholar
[15]Tsui, D. C., Stormer, H. L., Hwang, J. C. M., Brooks, J. S., Naughton, M. J., Phys. Rev. B 28, 2274 (1983).Google Scholar
[16]Price, P. J., J. Vac. Sci. Technol. 19, 599 (1981).Google Scholar
[17]Schubert, E. F., Cunningham, J. E., Tsang, W. T. and Timp, G., Appl. Phys. Lett. 51, 1170 (1987).Google Scholar