Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T09:53:09.279Z Has data issue: false hasContentIssue false

Epitaxial GaAs on Si: Progress and Potential Applications

Published online by Cambridge University Press:  28 February 2011

Don W. Shaw*
Affiliation:
Materials Science LaboratoryTexas Instruments IncorporatedP.O. Box 655936,MS-147 Dallas,TX 75265
Get access

Abstract

Recent successes, such as the demonstration of a 1K SRAM, have established epitaxial GaAs on Si substrates as a promising technology rather than a device designer's dream. For the first time we can seriously consider combining the individual electronic and optical properties of GaAs and Si within a single epitaxial structure. Applications for GaAs on Si range from those that simply utilize the Si as a low-cost, large-areapassive substrate with superior strength and thermal conductivity to the long-sought multifunction integrated circuits where Si and III–V components are integrated within a single monolithic chip. This paper will attempt to provide a realistic appraisal of the potential applications of epitaxial GaAs on Si with emphasis on the special demands imposed by each application and barriers that must be circumvented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jordan, A.S., Von Neida, A.R., and Caruso, R., J. Cryst. Growth 70, 555 (1984).Google Scholar
2. Chen, C.P. and Leipold, M.H., Proc. 18th IEEE Photovoltaic Specialists Conf. 1985, pp 310–316.Google Scholar
3. Wolff, G.A., Tolman, L., Field, N.J., and Clark, J.C., in Semiconductors and Phosphors, Shon, M. and Welker, H., eds., Wiley-Interscience, New York, 1958, pp 153156.Google Scholar
3a Mahajan, S. and Chin, A.K., J. Cryst. Growth 54, 138 (1981).Google Scholar
3b Goryunova, N.A., Borshchevskii, A.S., and Tretiakov, D.N., in Semiconductors and Semimetals, Willardson, R.K. and Beer, A.C., eds., Academic, New York, Vol. 4, 1968, p. 3.Google Scholar
4. Maycock, P.D., Solid State Electronics 10, 161 (1967).Google Scholar
4a Wolf, H.F., Silicon Semiconductor Data, Pergamon Press, New York, 1969.Google Scholar
5. Kroemer, H., in Heteroepitaxy on Silicon, Fan, J.C.C. and Poate, J.M., eds., Materials Res. Soc. Proceed., Vol. 67, 1986, pp 1–14.Google Scholar
6. Fischer, R., Masselink, W.T., Klem, J., Henderson, T., McGlinn, T.C., Klein, M.V., Morkoc, H., Mazur, J.H., and Washburn, J., J. Appl. Phys. 58, 374 (1985).Google Scholar
6a Fischer, R., Morkoc, H., Neumann, D.A., Zabel, H., Choi, C., Otsuka, N., Longerbone, M., and Erickson, L.P., J. Appl. Phys. 60, 1640 (1986).Google Scholar
7. Sakamoto, T. and Hashiguchi, G., Japan. J. Appl. Phys. 25, L78 (1986).Google Scholar
8. Otsuka, N., Choi, C., Kolodziejski, L.A., Gunshor, R.L., Fischer, R., Peng, C.K., Morkoc, H., Nakamura, Y., and Nagakura, S, J. Vac. Sci. Technol. B 4, 896(1986).Google Scholar
9. Lee, J.W., Proceed. 1986 Int. Symp. on GaAs and Related Compounds, Inst.Phys. Conf. Ser. 83, 111 (1987).Google Scholar
10. Lee, J.W., Shichijo, H., Tsai, H.L., and Matyi, R.J., Appl. Phys. Lett. 50,31 (1987).Google Scholar
11. Vilms, J. and Kerps, D., J. Appl. Phys. 53, 1536 (1982).Google Scholar
12. Fletcher, R.M., Wagner, D.K., and Ballantyne, J.M., Mater. Res. Soc. Symp.Proc. 25, 417 (1984).Google Scholar
13. Joyce, W.B. and Dixon, R.W., J. Appl. Phys. 46, 855 (1975).Google Scholar
14. Sakai, S., Soga, T., Takeyasu, M., and Umeno., M. Japan. J. Appl. Phys. 24, L666 (1985).Google Scholar
15. van der Ziel, J.P., Dupuis, R.D., Logan, R.A., Mikulyak, R.M., Pinzone, C.J., and Savage, A., Appl. Phys. Lett. 50, 454 (1987).Google Scholar
16. Kaliski, R.W., Holonyak, N. Jr., Hsieh, K.C., Nam, D.W., Lee, J.W., Shichijo, H., Burnham, R.D., Epler, J.E., and Chung, H.F., Appl. Phys. Lett. 50, 836 (1987).Google Scholar
17. Nam, D.W., Holonyak, N. Jr., Hsieh, K.C., Kaliski, R.W., Lee, J.W., Shichijo, H., Epler, J.E., Burnham, R.D., and Paoli, T.L., submitted to Appl. Phys.Lett.Google Scholar
18. Tsaur, B-Y., Fan, J.C.C., Turner, G.W., Davis, F.M., and Gale, R.P., Proc. IEEE Photovolt. Spec. Conf. 1982, pp 1143–1148;Google Scholar
18a Fan, J.C.C., Tsaur, B-Y., and Palm, B.J., Proc. 16th IEEE Photovolt. Spec. Conf. 1982, pp 692–701.Google Scholar
19. Yamaguchi, M., Yamamoto, A., and Itoh, Y., J. Appl. Phys. 59, 1751 (1986).Google Scholar
20. Gale, R.P., Fan, J.C.C., Tsaur, B-Y., Turner, G.W. and Davis, G.M., IEEE Elec. Dev. Lett. ED–2, 169 (1981).Google Scholar
21. Vernon, S.M, Spitzer, M.B., Tobin, S.P. and Wolfson, R.G., Proc. 17th IEEE Photovolt. Spec. Conf. 1984, pp 434–9.Google Scholar
22. Itoh, Y., Nishioka, T., Yamamoto, A., and Yamaguchi, M., Appl. Phys. Lett. 49, 1614 (1986).Google Scholar
23. Fischer, R.J., Chand, N., Kopp, W.F., Peng, C.-K., Morkoc, H., Gleason, K.R., and Scheitlin, D., IEEE Trans. Electron Devices ED–33, 206 (1986).Google Scholar
24. Shichijo, H., these proceedings.Google Scholar
25. Choi, H.K., Tsaur, B.-Y., Metze, G.M., Turner, G.W., and Fan, J.C.C., IEEE Electron Device Lett. EDL–5, 207 (1984).Google Scholar
26. Metze, G.M., Choi, H.K., and Tsaur, B-Y., Appl. Phys. Lett. 45, 1107 (1984).Google Scholar
27. Akiyama, M., Kawarada, Y., Ueda, T., Nishi, S. and Kaminishi, K., J. Crystal Growth 77, 490 (1986)Google Scholar
28. Aksun, M.I., Morkoc, H., Lester, L.F., Duh, K.H.G., Smith, P.M., Chao, P.C., Longerbone, M., and Erickson, L.P., Appl. Phys. Lett. 49, 1654 (1986).Google Scholar
29. Fischer, R.J., Henderson, T., Klem, J., Masselink, W.T., Kopp, W.F., Morkoc, H., and Litton, C.W., Electron. Lett. 20, 945 (1984).Google Scholar
30. Fischer, R.J., Kopp, W.F., Gedymin, J.S., and Morkoc, H., IEEE Trans. Electron Devices ED–33, 1407 (1986).Google Scholar
31. Fischer, R.J., Chand, N.C., Kopp, W.F., Morkoc, H., Erickson, L.P., and Youngman, R., Appl. Phys. Lett. 49, 397 (1985).Google Scholar
32. Fischer, R.J., Klem, J., Peng, C.K., Gedymin, J.S., and Morkoc, H., IEEE Electron Device Lett. EDL–7, 112 (1986).Google Scholar
33. Asbeck, P.M., Gapta, A.K., Ryan, F.J., Miller, D.L., Anderson, R.J., Liechti, C.A., and Eisen, F.H., IEDM Tech. Dig., 1984, pp. 864–865.Google Scholar
34. Tran, L.T., Lee, J.W., Shichijo, H., and Yuan, H.T., IEEE Electron Device Lett. EDL–8, 50 (1987).Google Scholar
35. Nonaka, T., Akiyama, M., Kawarada, Y., and Kaminishi, K., Japan. J. Appl. Phys., 23, L919 (1984).Google Scholar
36. Tran, L.T., Matyi, R.J., Shichijo, H., Yuan, H.-T., and Lee, J.W., submitted to IEEE Electron Device Lett.Google Scholar
37. Shichijo, H., Lee, J.W., McLevige, W.V., and Taddiken, A.H., Proceed. 1986 Int. Symp. GaAs and Related Compounds, Inst. Phys. Conf. Ser. 83, 489, 1987.Google Scholar
38. Rosen, A., Caulton, M., Stabile, P., Gombar, A.M., Janton, W.M., Wu, C.P., Corboy, J.F., and Magee, C.W., RCA Review 42, 633 (1981).Google Scholar
39. Matyi, R.J., Shichijo, H., Moore, T.M., and Tsai, H.L., submitted to Appl. Phys. Lett. Google Scholar
39a See also Cho, A.Y. and Bellamy, W.C., J. Appl. Phys. 46, 783 (1975).Google Scholar
40. Shaw, D.W., J. Electrochem. Soc. 113, 904 (1966).Google Scholar
41. Choi, H.K., Turner, G.W., Windhorn, T.H., and Tsaur, B.-Y., IEEE Electron Device Lett. EDL–7, 500 (1986).Google Scholar
42. Bean, R.C., Zanio, K.R., Hay, K.A., Wright, J.M., Saller, E.J., Fischer, R., and Morkoc, H., J. Vac. Sci. Technol. A 4, 2153 (1986).Google Scholar