Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T01:05:20.712Z Has data issue: false hasContentIssue false

Epitaxial Growth of Metastable Facf—Centered Cubic Co on (111)Si with A Thin Intermediate Cu Layer

Published online by Cambridge University Press:  15 February 2011

C.S. Liu
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
L.J. Chen
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Get access

Abstract

Metastable face—centered cubic (fcc) Co was grown epitaxially on (111)Si with an intermediate Cu layer in an ultrahigh vacuum chamber at room temperature. The metastable fcc—Co was grown to extend to a thickness of 30 nm. Polycrystalline and epitaxial hexagonal close—packed (hcp) Co was grown on (111)Si without and with 3 nm or thicker intermediate Cu layer, respectively. The key to the successful growth of fcc—Co is to deposit Co directly onto a thin (2 nm or thinner) interface compound (—Cu, which is of hcp structure and consisting of 11.2 to 14.0 at.% Si. The growth of the metastable phase is attributed to the attainment of an appropriate electron/atomratio at the interface to favor the formation of the fcc—Co.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chang, C. A., Appl. Phys. Lett. 55, 2754 (1989).Google Scholar
2. Chang, C. A., Appl. Phys. Lett. 57, 297 (1990).Google Scholar
3. Chang, C. A., Appl. Phys. Lett. 58, 1745 (1991).Google Scholar
4. Kools, J.C.S., Coehoorn, R., Hakkens, F. J. G. and Fastenau, R. H. J., J. Magn. Magn. Mater. 121, 83 (1993).Google Scholar
5. Borges, J.F.M., Tosin, G., Schelp, L. F., Mattoso, N., Teixeira, S. R., Mosca, D. H., and Schreiner, W. H., J. Magn. Magn. Mater. 121, 53 (1993).Google Scholar
6. Lamelas, F. J., Lee, C. H., He, H., Vavra, W., and Clarke, R., Phys. Rev. B, 40, 5837 (1990).Google Scholar
7. Harp, G.R. and Parkin, S.S.P., Appl. Phys. Lett. 65, 3063 (1994).Google Scholar
8. Prinz, G. A., Phys. Rev. Lett. 54, 1051 (1985).Google Scholar
9. Dekoster, J., Bemelmans, H., Wachter, J. De, Moons, R., and Langonche, G., Appl. Phys. Lett. 65, 1224 (1994).Google Scholar
10. Jesser, W. A. and Matthew, J. W., Philos. Mag. 17, 461 (1968).Google Scholar
11. Chen, L.J. and Wu, I.W., J. Appl. Phys. 52, 3310 (1981).Google Scholar
12. Sheng, T.T. and Chang, C.C., IEEE Trans. Electron Devices ED–23, 531 (1976).Google Scholar
13. Liu, C.S. and Chen, L.J., J. Appl. Phys. 74, 5501 (1993).Google Scholar
14. Liu, C.S. and Chen, L.J., Appl. Surf. Sci. (in press, 1995).Google Scholar
15. Falicov, L.M., Pierce, D.T., Bader, S.D., Gronsky, R., Hathway, K.B., Hopster, H.J., Lambeth, D.N., Parkin, S.S.P., Prinz, G., Salamon, M., Schuller, I.K., and Victora, R.H., J. Mater. Res. 5, 1299 (1990).Google Scholar
16. Hume-Rothery, W. and Raynor, G. V., 3rd Edition, “The Structure of Metals and Alloys”, (Institute'of Metals, London, 1956).Google Scholar
17. Komura, Y. and Kitano, Y., Acta Crystall. B33, 2496 (1977).Google Scholar
18. Bruinsma, R. and Zangwill, A., Phys. Rev. Lett. 55, 214 (1985).Google Scholar
19. Redfield, A.C. and Zangwill, A. M., Phys. Rev. B 34, 1378 (1986).Google Scholar