Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T10:21:10.186Z Has data issue: false hasContentIssue false

Erbium Doped Si/Sige Waveguide Diodes: Optical And Electrical Characterization

Published online by Cambridge University Press:  10 February 2011

E. Neufeld
Affiliation:
Walter Schottky Institut, Technische Universitdt Muinchen, Am Coulombwall, D-85748 Garching, Germany
A. Luigart
Affiliation:
Walter Schottky Institut, Technische Universitdt Muinchen, Am Coulombwall, D-85748 Garching, Germany
A. Sticht
Affiliation:
Walter Schottky Institut, Technische Universitdt Muinchen, Am Coulombwall, D-85748 Garching, Germany
K. Brunner
Affiliation:
Walter Schottky Institut, Technische Universitdt Muinchen, Am Coulombwall, D-85748 Garching, Germany
G. Abstreiter
Affiliation:
Walter Schottky Institut, Technische Universitdt Muinchen, Am Coulombwall, D-85748 Garching, Germany
Get access

Abstract

We have fabricated erbium- and oxygen-doped Si/SiGe waveguide diodes showing the characteristic 1.54 µm electroluminescence (EL) from incorporated Er+3, ions. All samples were grown by molecular beam epitaxy (MBE). The EL from the polished end facet of the waveguide was measured with a confocal microscope revealing a spatially narrow emission. Additional annealing was not necessary to improve the luminescence characteristics. Only a weak temperature dependence is found for the EL intensity between 4K and room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett. 43, 943 (1983).Google Scholar
2. Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Haydl, W., and Schneider, J., Appl. Phys. Lett. 46, 381 (1985).Google Scholar
3. Coffa, S., Franzb, G., Priolo, F., Polman, A., and Serna, R., Phys. Rev. B 49, 16313 (1994).Google Scholar
4. Zheng, B., Michel, J., Ren, F.Y.G., Kimerling, L.C., Jacobson, D.C., and Poate, J.M., Appl. Phys. Lett. 64, 2842 (1994).Google Scholar
5. Stimmer, J., Reittinger, A., Niitzel, J. F., Abstreiter, G., Holzbrecher, H., and Buchal, Ch., Appl. Phys. Lett. 68, 3290 (1996).Google Scholar
6. Stimmer, J., Reittinger, A., Neufeld, E., Abstreiter, G., Holzbrecher, H., Breuer, U., and Buchal, Ch., Thin Solid Films 294, 220 (1996).Google Scholar
7. Namavar, F., and Soref, R.A., J. Appl. Phys. 70, 3370 (1991).Google Scholar
8. Soref, R.A., Namavar, F., and Lorenzo, J.P., Opt. Lett. 15, 270 (1990).Google Scholar
9. Bernhard-Hdfer, K., Zrenner, A., Brunner, J., Abstreiter, G., Wittmann, F., Eisele, I., Appl. Phys. Lett. 66, 2226 ( 1995).Google Scholar
10. Kesan, V.P., May, P.G., Bassous, E., and Iyer, S.S., in International Electron Devices Meeting Technical Digest (IEEE, New York, 1990), p. 637.Google Scholar
11. Splett, A. and Petermann, K., IEEE Photon. Technol. Lett. 6, 425 (1994).Google Scholar
12. Splett, A., Zinke, T., Petermann, K., Kasper, E., Kibbel, H., Herzog, H.-J., and Presting, H., IEEE Photon. Technol. Lett. 6, 425 (1994)Google Scholar
13. Neufeld, E., Sticht, A., Brunner, K., Abstreiter, G., Holzbrecher, H., Bay, H., Buchal, Ch., Appl. Phys. Lett. 71, 3129 (1997).Google Scholar
14. Priolo, F., Coffa, S., Franzò, G., Spinella, C., Camera, A., Bellani, V., J. Appl. Phys. 74, 4936 (1993).Google Scholar
15. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, New York, 1981).Google Scholar
16. Haecker, W., phys. stat. sol. (a) 25, 301 (1974).Google Scholar