Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T13:49:05.721Z Has data issue: false hasContentIssue false

Erbium-silicon-oxide Nano-complexes Prepared by Wet Chemical Synthesis

Published online by Cambridge University Press:  10 February 2011

H. Isshiki
Affiliation:
FOM-Institute Amolf, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands Department of Electronic Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
M.J.A. de Dood
Affiliation:
FOM-Institute Amolf, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
T. Kimura
Affiliation:
Department of Electronic Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
A. Polman
Affiliation:
FOM-Institute Amolf, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
Get access

Abstract

An entirely new method to fabricate optically active and carrier-mediated excitable erbium complexes on silicon is presented. The Er-Si-O nano-complexes are formed by spin-coating a Si (100) substrate with an ErC13 solution, followed by a rapid thermal oxidation and annealing sequence (RTOA). Intense room-temperature luminescence is observed from the Er-Si-O nano-complexes, with a line width as narrow as 4 meV at room temperature. The Er emission at 1.53 μm can be excited both directly and through photo carriers. Formation and optical activation of the Er-Si-O nano-complexes are discussed. In addition, an application of the wet chemical synthesis technique to incorporation of the Er-Si-O nano-complexes into nano-porous silicon waveguides is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zheng, B., Michel, J., Ren, F. Y. G., Kimerling, L. C., Jacobson, D. C., Poate, J.M., Appl. Phys. Lett. 64 2842 (1994).Google Scholar
2. Franzo, G., Priolo, F., Coffa, S., Polman, A., Carnera, A., Appl. Phys. Lett. 64 2235 (1994).Google Scholar
3. Zhao, X., Komuro, S., Isshiki, H., Aoyagi, Y., Sugano, T., Appl. Phys. Lett. 74 120 (1999).Google Scholar
4. Zemon, S., Lambert, G., Miniscalco, W. J., and Thompson, B. A., Sources, Fiber Laser and III, Amplifiers, Digonnet, M. J. F. and Snitzer, E., Eds., Proc. SPIE 1581 91 (1992).Google Scholar
5. Srivasta, A. K., Zyskind, J. L., Sulhoff, J. W., Evankow, J. D. Jr, and Mills, M. A., Optical Fiber Communication Conference, Vol. 2, 1996 Technical Digest Series., 33 (1996).Google Scholar
6. Li, C., Wyon, C., Moncorge, R., IEEE J.Quant.Elect. 28 1209 (1992).Google Scholar
7. Gruber, J.B., Henderson, J.R., Muramoto, M., Rajnak, K., Conway, J.G., J. Chem. Phys. 45, 477 (1966).Google Scholar
8. Isshiki, H.,Polman, A., Kimura, T., J. Luminescence 102–103 819 (2003).Google Scholar
9. Shin, J. H., Serna, R., Hoven, G. V. van den, Polman, A., H, W. G. J.. Sark, M. van, and Vredenberg, A. M., Appl. Phys. Lett. 68 46 (1996).Google Scholar
10. Kimura, T., Yokoi, A., Horiguchi, H., Saito, R., Ikoma, T., and Saito, A., Appl. Phys. Lett. 65, 983 (1994).Google Scholar
11. Zhao, X., Komuro, S., Isshiki, H., Maruyama, S., Aoyagi, Y., and Sugano, T., Appl. Surf. Sci. 113/114 121 (1997).Google Scholar