Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T14:18:59.373Z Has data issue: false hasContentIssue false

Evaluation of Four Imaging Techniques for the Electrical Characterization of Solar Cells

Published online by Cambridge University Press:  21 March 2011

Gregory M. Berman
Affiliation:
Department of Electrical Engineering, University of Colorado, Boulder, CO 80309, U.S.A. National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
Nathan J. Call
Affiliation:
Department of Materials Science, Colorado School of Mines, Golden, CO 80401, U.S.A. National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
Richard K. Ahrenkiel
Affiliation:
Department of Materials Science, Colorado School of Mines, Golden, CO 80401, U.S.A. National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
Steven W. Johnston
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
Get access

Abstract

We evaluate four techniques that image minority carrier lifetime, carrier diffusion length, and shunting in solar cells. The techniques include photoluminescence imaging, carrier density imaging, electroluminescence imaging, and dark lock-in thermography shunt detection. We compare these techniques to current industry standards and show how they can yield similar results with higher resolution and in less time.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schroder, D. K., Semiconductor Material and Device Characterization, (John Wiley & Sons, Inc., New York, 1990).Google Scholar
2. Orton, J. W. and Blood, P., The Electrical Characterization of Semiconductors: Measurement of Minority Carrier Properties (Academic Press, Inc., San Diego, CA 1990).Google Scholar
3. Breitenstein, O. and Langenkamp, M., Lock-in Thermography – Basics and Uses for Functional Diagnostics of Electrical Components (Springer, New York, 2003).Google Scholar
4. Koshka, Y., Ostapenko, S., Tarasov, I., McHugo, S., and Kalejs, J. P., Appl. Phys. Lett. 74, 1555 (1999).Google Scholar
5. Tajima, M., Li, Z., Sumie, S., Hashizume, H., and Ogura, A., Jpn. J. Appl. Phys. 43, 432 (2004).Google Scholar
6. Trupke, T., Bardos, R. A., Schubert, M. C., and Warta, W., Appl. Phys. Lett. 89, 044107 (2006).Google Scholar
7. Bail, M., Kentsch, J., Brendel, R., and Schulz, M., Proceedings of the 28th IEEE-PVSC, Anchorage, AK, 99 (2000).Google Scholar
8. Isenberg, J., Riepe, S., Glunz, S. W., and Warta, W., J. Appl. Phys. 93, 4268 (2003).Google Scholar
9. Fuyuki, T., Kondo, H., Yamazaki, T., Takahashi, Y., and Uraoka, Y., Appl. Phys. Lett. 86, 262108 (2005).Google Scholar
10. Wurfel, P., Trupke, T., Rudiger, M., Puzzer, T., Schaffer, E., Warta, W., and Glunz, S. W., 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan, Italy (2007).Google Scholar
11. Palais, O., Gervais, J., Yakimov, E., and Martinuzzi, S., Eur. Phys. J. AP 10, 157 (2000).Google Scholar
12. Breitenstein, O. in 17th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes, edited by Sopori, B. L. (2007).Google Scholar