Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T14:00:13.271Z Has data issue: false hasContentIssue false

Evaluation of Graphene and Graphene Derivatives for RF-Impedance Based Sensing

Published online by Cambridge University Press:  03 March 2011

Yun Xing
Affiliation:
Department of Electrical Engineering
Hong Huang
Affiliation:
Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glen Hwy, Dayton, 45435
Yan Zhuang
Affiliation:
Department of Electrical Engineering
Get access

Abstract

Graphene and its derivatives have attracted much attention for potential applications in biological sensing systems because of their unique 2D structural, surface and electronic properties. Reports on graphene - based electrochemical impedance biosensors are emerging rapidly. In this research, we have explored the RF (radio frequency) impedance –based sensing feasibility of graphene and graphene derivative materials on the coplanar waveguide (CPW) device. The transmission line based sensing experiments demonstrated clear and significant blueshifts of resonance frequencies and decrease of the resistance at and beyond resonance frequencies after graphene oxide is absorbed with DNA. The results may lead to an alternative approach in developing graphene based chemical and biosensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haes, A.J., Chang, L., Klein, W.L., and Van Duyne, R.P. J. Am. Chem. Soc., 127, 2264–2271, (2005).Google Scholar
2. Lin, Y.H., Lu, F., Tu, Y., and Ren, Z. F. Nano Lett., 4, 191–195, (2004).Google Scholar
3. Liu, Y., Wang, M.K., Zhao, F., Xu, Z.A., and Dong, S.J. Biosensors & Bioelectronics, 21, 984–988, (2005).Google Scholar
4. Wang, J. Electroanalysis, 17, 7–14, (2004).Google Scholar
5. Rogers, K.R., Anal. Chim. Acta, 568, 222–231, (2006).Google Scholar
6. Shan, C., Yang, H., Song, J., Han, D., Ivaska, A., and Niu, L. Anal. Chem. 81, 2378–2382, (2009).Google Scholar
7. Zhou, M., Zhai, Y., and Dong, S. Anal. Chem. 81, 5603–5613, (2009).Google Scholar
8. Lu, C.H., Yang, H.H., Zhu, C.L., Chen, X., and Chen, G.N. Angew Chem Int. 48(26), 4785–7, (2009).Google Scholar
9. Mohanty, N. and Berry, V. Nano Lett., 8(12), 4469–4476, (2008).Google Scholar
10. Kang, X. H., Wang, J., Wu, H., Aksay, I. A., Liu, J., and Lin, Y. H. Bionsensors & Bioelectronics, 25, 901–905, (2009) .Google Scholar
11. Wu, J. F., Xu, M. Q., Zhao, G. C. Electrochem. Comm., 12, 175–177, (2010).Google Scholar
12. Nandi, N., Bhattacharyya, K., and Bagchi, B., Chem. Rev., 100, 2013–2045, (2000).Google Scholar
13. Foster, K., Shepps, J., and Epstein, B. Bioelectromagnetics, 3, 29 (1982).Google Scholar
14. Hefti, J., Pan, A., and Kumar, A., Appl. Phys. Lett., 75, 1802–1804, (1999).Google Scholar
15. Ermolina, I., Morgan, H., Green, N. G., Milmner, J. J., and Feldman, Y. Biochimica et Biophysica Acta, 1622, 57–63, (2003).Google Scholar
16. Suzuki, M., Shigematsu, J., and Kodama, T. J. Phys. Chem., 100, 7279–7282, (1996).Google Scholar
17. Dalmay, C., Pothier, A., Blondy, P., Lalloue, F., and Jauberteau, M. O. Biodevices, 3–6, (2009).Google Scholar
18. Dalmay, C., Pothier, A., Cheray, M., Lalloue, F., Jauberteau, M. O., and Blondy, P. Int. J. Microw. Wireless Technol, 497–504, (2010).Google Scholar
19. Blad, B., and Baldetorp, B., Physiol. Meas. 17, A 105–A 115, (1996).Google Scholar
20. Vander Vorst, A., Rosen, A., and Kotsuka, Y. IEEE Press, Los Alamitos, (2006).Google Scholar
21. Chen, Q., Roitman, D., and Knoesena, A. Sensors & Actuators A, 133, 480–485, (2007) .Google Scholar
22. Olapinski, M., Manus, S., George, M., Brüggemann, A., and Fertig, N. Appl. Phys. Lett., 88, 013902, (2006).Google Scholar
23. Facera, G.R., Notterman, D.A., and Sohn, L.L. Appl. Phys. Lett., 78, 996–998, (2001).Google Scholar
24. Choi, M.K., Taylor, K., Bettermann, A., and van der Weide, D.W. Phys. Med. Biol. 47, 3777–3787, (2002)Google Scholar
25. Asami, K. J. Phys. D: Appl. Phys., 41, 085501, (2008).Google Scholar
26. Kim, Y.I., Park, T. S., Kang, J. H., Lee, M. C., Kim, J. T., Park, J. H., and Baik, H. K. Sens. Actuators B, 119, 592–599, (2006).Google Scholar
27. Kim, Y.I., Park, Y., and Baik, H. K. Sens. Actuators A, 143, 279–285, (2008).Google Scholar
28. Denef, N., Hagelsieb, L. M., Laurent, G., Pampin, R., Foultier, B., Remacle, J., Flandre, D., and Raskin, J. P. EUMW Conference Digest, 669–672, Sep. 2004.Google Scholar
29. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A. Science, 306, 666–669, (2004).Google Scholar
30. Geim, A.K. and Novoselov, K.S. Nature Materials, 6, 183–191, (2007).Google Scholar
31. Jannik, C.M., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., and Roth, S. Nature, 446, 60–63, (2007).Google Scholar
32. Stankovich, S., Dikin, D. A., Dommett, G., Kohlhaas, K., Zimney, E.J., Stach, E., Piner, R., Nguyen, S.T., and Ruoff, R.S. Nature, 442, 282–286, (2006).Google Scholar
33. Stoller, M.D., Park, S., Zhu, Y., An, J., and Ruoff, R.S. Nano Lett., 8, 3498–3502, (2008).Google Scholar
34. Zhang, Y., Tan, Y.-W., Stormer, H.L., and Kim, P. Nature, 438, 201–204, (2005).Google Scholar
35. Wehling, T.O., Novoselov, K.S., Morozov, S.V., Vdovin, E.E., Katsnelson, M.I., Geim, A. K., and Lichtenstein, A.I. Nano Lett., 8, 173–177, (2008).Google Scholar
36. Gorjizadeh, N., Farajian, A.A., Esfarjani, K., and Kawazoe, Y. Phys. Rev. B, 78, 155427, (2008).Google Scholar
37. Hod, O., Barone, V., Peralta, J.E., and Scuseria, G.E., Nano Lett., 7, 2295–2299, (2007).Google Scholar
38. Gunlycke, D., Li, J., Mintmire, J.W., and White, C.T. Appl. Phys. Lett., 91, 112108, (2007).Google Scholar
39. Kan, E.J., Li, Z.Y., Yang, J. L., and Hou, J.G. J. Amer. Chem. Soc., 130, 4224, (2008).Google Scholar
40. Chan, K.T., Neaton, J.B., and Cohen, M.L. Phys. Rev. B, 77, 235430, (2008).Google Scholar
41. Jung, I., Dikin, D. A., Piner, R. D., and Ruoff, R. S., Nano Lett., 8(12), 4283–4287, (2008).Google Scholar
42. Szabo, T., Berkesi, O., Forgo, P., Josepovits, K., Sanakis, Y., Petridis, D., and Dekany, I. Chem. Mater., 18(11), 2740–2749, (2006).Google Scholar