Published online by Cambridge University Press: 14 December 2012
The nanoencapsulation in biocompatible inorganic materials with human cell activity is a leading technology to control the process of releasing the drug in the right place. At present, the sol-gel process has emerged as a promising platform for the immobilization, stabilization and encapsulation of biological molecules such as enzymes, antibodies, microorganisms, and a variety of drugs. The matrices obtained are chemically inert, hydrophilic and easy synthesis. They have high mechanical strength, thermal stability in wide temperature ranges and absorb organic solvents so insignificant compared with other organic polymers. They are resistant to microbial attack and exhibit high biocompatibility with the body, as provided for implantation in situ in the treatment of various diseases. An additional advantage is that it provides viability encapsulated molecules, since these matrices act as reservoirs of water thus helping to maintain the biological activity of enzymes, antibodies, cells, and drugs for the moisture level required for the molecule. We used the action of the active ingredients of tepezcohuite (condensed tannins) to assess the capacity aseptic surgical wound healing than 1 cm in diameter in New Zealand white rabbits. Experimentally and statistically demonstrating the effectiveness of healing nanoreservoirs Tan/TiO2-150 the weight of tannins by 60% compared to condensed tannins as such, TiO2and isotonic saline.