Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T07:00:14.736Z Has data issue: false hasContentIssue false

Evidence for Cooperative Oxidation of Mocvd Precursors Used in BaxSr1‐x TiO3 Film Growth

Published online by Cambridge University Press:  10 February 2011

Timothy E. Glassman
Affiliation:
Advanced Technology Materials, 7 Commerce Drive, Danbury, CT 06810
Gautam Bhandari
Affiliation:
Advanced Technology Materials, 7 Commerce Drive, Danbury, CT 06810
Thomas H. Baum
Affiliation:
Advanced Technology Materials, 7 Commerce Drive, Danbury, CT 06810
Get access

Abstract

Metal ß‐diketonate complexes are common precursors for chemical vapor deposition (CVD) of a wide variety of thin‐film materials. Liquid delivery CVD has been used to deposit high dielectric constant materials, such as BaxSr1‐xTiO3.[1] This method relies upon volumetric metering of organic soluble precursors, “flash” vaporization to transport the reactants into the gas‐phase and subsequent thermal decomposition onto the heated substrate. This approach enables the precise control of deposited film stoichiometry. In this study, simultaneous thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to examine the transport and thermal decomposition properties of M(thd)2 (M = Sr, Ba) and Ti(O‐i‐Pr)2(thd)2. In an argon atmosphere, vaporization and transport are observed below 400 °C. In oxidizing atmospheres, such as nitrous oxide and oxygen, decomposition leads to metal carbonate formation as evidenced by both the mass balance and x‐ray diffraction patterns of the residual solids. In the presence of an equimolar amount of the Ti precursor, the formation of carbonates is not observed and oxides are produced at greatly reduced temperatures. Based upon this data, a cooperative oxidation mechanism is proposed which results in “clean” precursor decomposition and BST oxide formation at temperatures near 500 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Van Buskirk, P. C., Bilodeau, S. M., Roeder, J. F. and Kirlin, P., Japan. J. Appl. Phys., 35, 2525 (1996). P. C. Van Buskirk, J. F. Roeder and S. M. Bilodeau, Integ. Ferroelec, 10, 9 (1995).Google Scholar
2 Kotecki, D. E., Semiconductor International, 12, 109 (1996).Google Scholar
3 Bilodeau, S. M., Roeder, J., Van Buskirk, P. and Kirlin, P., Proc. CVD Teck lnterlevel Dielectrics and Intercon. Symp., Semicon West (1995). C. S. Hwang, S. O. Park, H. ‐J. Cho, C. S. Kang, H. ‐K. Kang, S. I. Lee and M. Y. Lee, Appl. Phys. Lett., 67, 2819 (1995). T. Kuroiwa, Y. Tsunemine, T. Horikawa, T. Makita, J. Tanimura, N. Mikami, and K. Sato, Japan. J. Appl. Phys., 33, 5187 (1995). T. Kawahara, M. Yamamuka, A. Yuuuki and K. Ohno, Japan. J. Appl. Phys., 34, 5077 (1995).Google Scholar
4 Gardiner, R., Brown, D. W., Kirlin, P. S., and Rheingold, A. L., Chem. Mater., 3, 1053 (1991). E. W. Berg, N. M. Herrera, Anal. Chim. Acta, 60, 117 (1972). G. Malandrino, D. S. Richeson, T. J. Marks, D. C. DeGroot, J. L. Shindler and C. R. Kannewurf, Appl. Phys. Lett., 66, 444 (1989). T. Nakamura, H. Abe, T. Kanamori and S. Shibata, Japan. J. Appl. Phys., 27, L1265 (1988).Google Scholar
5 Yamamoto, A. and Kambara, S., J. Amer. Chem. Soc, 79, 4344 (1957). D. M. Puri, K. C. Pnade and R. C. Mehrotra, J. Less Common Metals, 4, 393 (1962). T. E. Glassman, D. Gordon and T. H. Baum, unpublished results, 1994.Google Scholar