Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T06:08:42.013Z Has data issue: false hasContentIssue false

Evolution of microstructure of 304 stainless steel joined by brazing process

Published online by Cambridge University Press:  01 February 2011

F. García-Vázquez
Affiliation:
Corporación Mexicana de Investigación en Materiales (COMIMSA), Calle ciencia y tecnología No. 790, Col. Saltillo 400, C.P. 25290, Coahuila, México email: felipegarcia@comimsa.com
I. Guzmán-Flores
Affiliation:
Corporación Mexicana de Investigación en Materiales (COMIMSA), Calle ciencia y tecnología No. 790, Col. Saltillo 400, C.P. 25290, Coahuila, México email: felipegarcia@comimsa.com
A. Garza
Affiliation:
Corporación Mexicana de Investigación en Materiales (COMIMSA), Calle ciencia y tecnología No. 790, Col. Saltillo 400, C.P. 25290, Coahuila, México email: felipegarcia@comimsa.com
J. Acevedo
Affiliation:
Corporación Mexicana de Investigación en Materiales (COMIMSA), Calle ciencia y tecnología No. 790, Col. Saltillo 400, C.P. 25290, Coahuila, México email: felipegarcia@comimsa.com
Get access

Abstract

Brazing is a unique method to permanently join a wide range of materials without oxidation. It has wide commercial application in fabricating components. This paper discusses results regarding the brazing process of 304 stainless steel. The experimental brazing is carried out using a nickel-based (Ni-11Cr-3.5Si-2.25B-3.5Fe) filler alloy. In this process, boron and silicon are incorporated to reduce the melting point, however they form hard and brittle intermetallic compounds with nickel (eutectic phases) which are detrimental to the mechanical properties of brazed joints. This investigation deals with the effects of holding time and brazing temperature on the microstructure of joint and base metal, intermetallic phases formation within the brazed joint as well as measurement of the tensile strength. The results show that a maximum tensile strength of 464 MPa is obtained at 1120°C and 4 h holding time. The shortest holding times will make boron diffuse insufficiently and generate a great deal of brittle boride components.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yu, Y.H., Lai, M.O.. Effect of gap filler and brazing temperature on fracture and fatigue of wide-gap brazed joints. J. Mater. Sci. 30 (1995) 21012107.Google Scholar
2. Lugscheider, E., Th. Schittny, E. Halmoy. Metallurgical aspects of additive-aided wide-clearance brazing with nickel-based filler metals. Welding journal (1989) 9s13s.Google Scholar
3. Zhung, W.D., Eagar, T.W.. Transient liquid phase bonding using coated metal powders. Welding journal (1997) 157s162s.Google Scholar
4. Tung, S.K., Lim, L.C.. Wide gap brazing with precraks of nickel base braze mixes. Mater. Sci. Technol. 11 (1995) 949954.Google Scholar
5. Johnson, R., Baron, M. and Livesey, N.J., Third International Brazing and Soldering Conference (BABS), Paper 21, 1979.Google Scholar
6. Lugsscheider, E., Schmoor, H., Eritt, U., Brazing, High Temperature Brazing and Diffusion Welding, Deutscher Verlag fur Schweisstechnik GmbH, Germany, 259–261 (1995).Google Scholar
7. Pra, F., Tochon, P., Mauget, Ch., Fokkens, J. and Willemsen, S.. Promising designs of compact heat exchangers for modular HTRs using the Brayton cycle. Nuc. Eng. Des. 2008; 238(11): 31603173.Google Scholar
8. Wenchun, Jiang, Jiangming, Gong, Shan-Tung, Tu, Hu Chen. Effect of geometric conditions on residual stress of brazed stainless steel plate-fin structure. Nuc. Eng. Des. 2008; 238 (7): 14971502.Google Scholar
9. Gale, W.F., Wallach, E.R.. Microstructural development in transient liquid-phase bonding. Metall. Trans. A 22 (1991) 24512457.Google Scholar
10. Eng, R.D., Ryan, E.J. and Doyle, J.R.. Solidification phenomena in nickel base brazes containing boron and silicon. Welding Journal, 56, 15 (1977).Google Scholar