Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T09:23:59.544Z Has data issue: false hasContentIssue false

Excitation of plasmon and guided-mode resonances in thin film silicon solar cells

Published online by Cambridge University Press:  16 March 2012

F.-J. Haug
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, CH-2000 Neuchâtel, Switzerland
K. Söderström
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, CH-2000 Neuchâtel, Switzerland
A. Naqavi
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, CH-2000 Neuchâtel, Switzerland
C. Battaglia
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, CH-2000 Neuchâtel, Switzerland
C. Ballif
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, CH-2000 Neuchâtel, Switzerland
Get access

Abstract

Thin film silicon solar cells are an attractive option for the production of sustainable energy but their low response at long wavelengths requires additional measures for absorption enhancement. The most successful concepts are based on light scattering interface textures whose understanding is greatly facilitated by considering a superposition of periodic textures that diffract the light into oblique angles, ideally beyond the critical angle of total internal reflection. Because the thickness of the active layers is on the same scale as the wavelength, interference of diffracted waves gives rise to resonance phenomena. We discuss the absorption enhancement in terms of a perturbation approach using the modal structure of a corresponding device with flat interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carlson, D. E. and Wronski, C. R., “Amorphous Si Solar CellApplied Physics Letters 28(11), p. 671673 (1976)Google Scholar
2. Deckman, H. W., Wronski, C. R., Witzke, H., and Yablonovitch, E., “Optically enhanced amorphous silicon solar cellsApplied Physics Letters 42(11), p. 968970 (1983)Google Scholar
3. Yablonovitch, E. and Cody, G. D., “Intensity enhancement in textured optical sheets for solar cellsElectron Devices, IEEE Transactions on 29(2), p. 300305 (1982)Google Scholar
4. Sheng, P., Bloch, A. N., and Stepleman, R. S., “Wavelength-selective absorption enhancement in thin-film solar cellsApplied Physics Letters 43, p. 579 (1983)Google Scholar
5. Atwater, H. A. and Polman, A., “Plasmonics for improved photovoltaic devicesNature materials 9(3), p. 205213 (2010)Google Scholar
6. Ferry, V. E., Munday, J. N., and Atwater, H. A., “Design considerations for plasmonic photovoltaicsAdvanced Materials 22, p. 4794 (2010)Google Scholar
7. Stuart, H. R. and Hall, D. G., “Thermodynamic limit to light trapping in thin planar structuresJOSA A 14(11), p. 30013008 (1997)Google Scholar
8. Schiff, E., “Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metalsJournal of Applied Physics ( to be published )Google Scholar
9. Yu, Z., Raman, A., and Fan, S., “Fundamental limit of light trapping in grating structuresOptics Express 18(103), p. A366-A380 (2010)Google Scholar
10. Yu, Z., Raman, A., and Fan, S., “Fundamental limit of nanophotonic light trapping in solar cellsProceedings of the National Academy of Science 107(41), p. 17491 (2010)Google Scholar
11. Haug, F.-J., Söderström, K., Naqavi, A., and Ballif, C., “Resonances and absorption enhancement in thin film silicon solar cellsJournal of Applied Physics 107, p. 044504 (2011)Google Scholar
12. Shakir, S. and Turner, A., “Method of poles for multilayer thin-film waveguidesApplied Physics A: Materials Science & Processing 29(3), p. 151155 (1982)Google Scholar
13. Haug, F.-J., Söderström, T., Cubero, O., Terrazoni-Daudrix, V., and Ballif, C., “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayersJournal of Applied Physics 106, p. 044502 (2009)Google Scholar
14. Kothandaraman, C., Tonon, T., Huang, C., and Delahoy, A. E.. Improvement of a-Si:H p-i-n devices using zinc oxide based back reflectors. in Proc. MRS Spring Meeting. 1991. San Francisco: MRS. p. 475-480 Google Scholar
15. Ross, R., Mohr, R., Fournier, J., and Yang, J.. Status of fluorinated amorphous silicon-germanium alloys and multijunction devices. in Proc. 19th IEEE PVSC. 1987. New Orleans. p. 327330 Google Scholar
16. Biswas, R., Zhou, D., Curtin, B., Chakravarty, N., and Dalal, V.. Surface plasmon enhancement of optical absorption of thin film a-Si:H solar cells. in Proc. 34 th IEEE PVSC. 2009. Philadelphia. p. 557 Google Scholar
17. Ferry, V. E., Verschuuren, M. A., Li, H., Schropp, R. E. I., Atwater, H. A., and Polman, A., “Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectorsApplied Physics Letters 95, p. 183503 (2009)Google Scholar
18. Naughton, M., Kempa, K., Ren, Z., Gao, Y., Rybczynski, J., Argenti, N., Gao, W., Wang, Y., Peng, Y., and Naughton, J., “Efficient nanocoax-based solar cellsPhysica Status Solidi - Rapid Research Letters 4, p. 181183 (2010)Google Scholar
19. Haug, F.-J., Söderström, T., Cubero, O., Terrazzoni-Daudrix, V., and Ballif, C., “Plasmonic absorption in textured silver back reflectors of thin film solar cellsJournal of Applied Physics 104, p. 064509 (2008)Google Scholar
20. Delli Veneri, P., Mercaldo, L. V., and Usatii, I., “Silicon oxide based n-doped layer for improved performance of thin film silicon solar cellsApplied Physics Letters 97, p. 023512 (2010)Google Scholar
21. Anderson, W., “Mode confinement and gain in junction lasersQuantum Electronics, IEEE Journal of 1(6), p. 228236 (1965)Google Scholar
22. Huang, Y. Z., Pan, Z., and Wu, R. H., “Analysis of the optical confinement factor in semiconductor lasersJournal of Applied Physics 79, p. 3827 (1996)Google Scholar