Article contents
Fabrication and Characterization of Nanostructured Thermoelectric Materials and Devices
Published online by Cambridge University Press: 08 April 2015
Abstract
We present results of modeling and experimental characterization of thermoelectric (TE) materials built on new fabrication principles, involving the coating of three-dimensionally structured quantum well super-lattice substrates with PbTe/PbSe. A new system for wafer-scale electrochemical deposition of such structures was specifically developed and will be described in this paper. Scanning electron microscopy (SEM) was used to measure film thickness and electron diffraction spectroscopy (EDS) was used to determine film material concentration. By adjusting deposition parameters, we were able to build stoichiometric PbSe, PbTe and stacked PbSe/PbTe super-lattice films on planar and pre-structured surfaces. The films were thermoelectrically modelled using COMSOL and then characterized using an infrared Seebeck effect measurement system which measured surface heating of the film while measuring the voltage associated with the temperature gradient. We report advances in the design and fabrication of TE materials which improve cost-effectiveness and TE efficiency.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2015
References
REFERENCES
- 3
- Cited by