Article contents
Fabrication and Optimization of a-Si:H n-i-p Single-junction Solar Cells with 8 Å/s Intrinsic Layers of Protocrystalline Si:H Materials
Published online by Cambridge University Press: 01 February 2011
Abstract
At the University of Toledo (UT), we have investigated hydrogenated amorphous silicon (a-Si:H) n-i-p solar cells with intrinsic layers deposited at high rates, ~ 8 Å/s, using our UT multi-chamber load-locked PECVD system. a-Si:H i-layers were grown with a VHF plasma density of ~ 0.2 W/cm2 and a frequency of 70 MHz using various hydrogen dilution levels. It is observed from the current-voltage (I-V) device performance characteristics that the open-circuit voltage (Voc) increases with increasing hydrogen dilution reaching a maximum and then decreasing. This drop in Voc can be attributed to the transition region (or protocrystalline regime) from an amorphous phase into a mixed amorphous+nanocrystalline (a + nc) phase for the i-layer. An initial efficiency of 9.99% (Voc = 0.986 V, Jsc = 13.98 mA/cm2, FF = 72.5%) was obtained. Quantum efficiency (QE) measurement has shown that the blue light response increases as the hydrogen dilution increases. Very good blue light spectral response with QE values over 0.7 at the wavelength of 400 nm have been obtained for a-Si:H cells made under specific deposition conditions in which tailored protocrystalline silicon materials were incorporated at the i/p interface region.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2007
References
- 1
- Cited by