Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T18:59:17.775Z Has data issue: false hasContentIssue false

Fabrication and Surface Modification of Porous Nano-Structured NiTi Orthopedic Scaffolds for Bone Implants

Published online by Cambridge University Press:  31 January 2011

Shuilin Wu
Affiliation:
shuiliwu@cityu.edu.hk, Department of Physics & Materials Science, City University of Hong Kong, kowloon, China
Xiangmei Liu
Affiliation:
sl.wu@alumni.cityu.edu.hk, Department of Physics & Materials Science, City University of Hong Kong, kowloon, China
Paul K Chu
Affiliation:
paul.chu@cityu.edu.hk, Department of Physics & Materials Science, City University of Hong Kong, kowloon, China
Tao Hu
Affiliation:
taohu2@student.cityu.edu.hk, Department of Physics & Materials Science, City University of Hong Kong, kowloon, China
Kelvin Wai Kwok Yeung
Affiliation:
wkkyeung@cityu.edu.hk, Department of Physics & Materials Science, City University of Hong Kong, kowloon, China
Jonathan C Y Chung
Affiliation:
appchung@cityu.edu.hk, Department of Physics & Materials Science, City University of Hong Kong, kowloon, China
Get access

Abstract

Near-equiatomic porous nickel-titanium shape memory alloys (NiTi SMAs) are becoming one of the most promising biomaterials in bone implants because of their unique advantages over currently used biomaterials. For example, they have good mechanical properties and lower Young�s modulus relative to dense NiTi, Ti, and Ti-based alloys. Porous NiTi SMAs are relatively easy to machine compared to porous ceramics such as hydroxyapatite and calcium phosphate that tend to exhibit brittle failure. The porous structure with interconnecting open pores can also allow tissue in-growth and favors bone osseointegration. In addition, porous NiTi alloys remain exhibiting good shape memory effect (SME) and superelasticity (SE) similar to dense NiTi alloys. To optimize porous NiTi SMAs in bone implant applications, the current research focuses on the fabrication methods and surface modification techniques in order to obtain adjustable bone-like structures with good mechanical properties, excellent superelasticity, as well as bioactive passivation on the entire exposed surface areas to block nickel ion leaching and enhance the surface biological activity. This invited paper describes progress in the fabrication of the porous materials and our recent work on surface nanorization of porous NiTi scaffolds in bone grafts applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Helsen, J.A. Breme, H. Jurgen, Metals as Biomaterials, 1st ed. (John Wiley & Sons Publisher, New York, 1998) p.73 Google Scholar
2 Kim, J.S. Kang, J.H. Kang, S.B. Yoon, K.S. and Kwon, Y.S.. Adv. Eng. Mater. 6, 403 (2004).Google Scholar
3 Li, B.Y. Rong, L.J. Li, Y.Y. and Gjunter, V.E.. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 31, 1867 (2000).Google Scholar
4 Chu, C.L. Chung, C.Y. Lin, P.H. and Wang, S.D.. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 366, 114 (2004).Google Scholar
5 Balasundaram, G. and Webster, T.J.. J. Mater. Chem. 16, 3737 (2006).Google Scholar
6 Lim, J.Y. and Donahue, H.J.. Tissue Eng. 13, 1879 (2007).Google Scholar
7 Goldberg, M. Langer, R. and Jia, X.Q.. Biomater, J.. Sci.-Polym. Ed. 18, 241 (2007).Google Scholar
8 Woo, K.M. Jun, J.H. Chen, V.J. Seo, J.Y. Baek, J.H. Ryoo, H.M. Kim, G.S. Somerman, M.J. and Ma, P.X.. Biomaterials 28, 335 (2007).Google Scholar
9 Dalby, M.J. Gadegaard, N. Tare, R. Andar, A. Riehle, M.O. Herzyk, P. Wilkinson, C.D.W. and Oreffo, R.O.C.. Nat. Mater. 6, 997 (2007).Google Scholar
10 Dalby, M.J. Gadegaard, N. Herzyk, P. Agheli, H. Sutherland, D.S. and Wilkinson, C.D.W.. Biomaterials 28, 1761 (2007).Google Scholar
11 Hing, K.A.. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 362, 2821 (2004).Google Scholar
12 Wu, S.L. Liu, X.M. Hu, T. Chu, P.K. Ho, J.P.Y. Chan, Y.L. Yeung, K.W.K. Chu, C.L. Hung, T.F., Huo, K.F. Chung, C.Y. Lu, W.W. Cheung, K.M.C. and Luk, K.D.K.. Nano Lett. 8, 3803 (2008).Google Scholar
13 Massalski, T.B. Okamoto, H. Subramanian, P.R. and Kacprzak, L.. Binary Alloy Phase Diagrams. (Materials Park,Ohio: ASM International, 1990) p. 2874.Google Scholar
14 Li, B.Y. Rong, L.J. and Li, Y.Y.. Intermetallics 8, 643 (2000).Google Scholar
15 Zhu, S.L. Yang, X.J. Hu, F. Deng, S.H. and Cui, Z.D.. Mater. Lett. 58, 2369 (2004).Google Scholar
16 Lagoudas, D.C. and Vandygriff, E.L.. J. Intell. Mater. Syst. Struct. 13, 837 (2002).Google Scholar
17 Greiner, C. Oppenheimer, S.M. and Dunand, D.C.. Acta Biomater. 1, 705 (2005).Google Scholar
18 Li, B.Y. Rong, L.J. Li, Y.Y. and Gjunter, V.E.. Acta Mater. 48, 3895 (2000).Google Scholar
19 Li, Y.H. Rong, L.J. and Li, Y.Y.. Alloy, J.. Compd. 345, 271 (2002).Google Scholar
20 Biswas, A.. Acta Mater. 5, 1415 (2005).Google Scholar
21 Mamoru, O.. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 287, 183 (2000).Google Scholar
22 Zhao, Y. Taya, M. Kang, Y.S. and Kawasaki, A.. Acta Mater. 53, 337 (2005).Google Scholar
23 Bram, M. Ahmad-Khanlou, A., Heckmann, A. Fuchs, B. Buchkremer, H.P. and Stover, D.. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 337, 254 (2002).Google Scholar
24 Hu, G.X. Zhang, L.X. Fan, Y.L. and Li, Y.H.. J. Mater. Process. Technol. 206, 395 (2008).Google Scholar
25 Wu, S.L. Chung, C.Y. Liu, X.M. Chu, P.K. Ho, J.P.Y. Chu, C.L. Lu, W.W. Cheung, K.M.C. and Luk, K.D.K.. Acta Mater. 55, 3437 (2007).Google Scholar
26 Yuan, B. Chung, C.Y. and Zhu, M.. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 382, 181 (2004).Google Scholar
27 Tadic, D. Beckmann, F. Donath, T. and Epple, M.. Materialwiss. Werkstofftech. 35, 240 (2004).Google Scholar
28 Jan, E. and Kotov, N.A.. Nano Lett. 7, 1123 (2007).Google Scholar
29 Hartgerink, J.D. Beniash, E. and Stupp, S.I.. Science 294, 1684 (2001).Google Scholar
30 Huwiler, C. Kunzler, T.P. Textor, M. Voros, J. and Spencer, N.D.. Langmuir 23, 5929 (2007).Google Scholar
31 Jang, J.H. Ullal, C.K. Gorishnyy, T. Tsukruk, V.V. and Thomas, E.L.. Nano lett. 6, 740 (2006).Google Scholar
32 Peng, X. and Chen, A. Adv. Funct. Mater. 16, 1355 (2006).Google Scholar
33 Sun, X.M. Chen, X. and Li, Y.D.. Inorg. Chem. 41, 4996 (2002).Google Scholar
34 Wu, S.L. Liu, X.M. Chan, Y.L. Chu, P.K. Chung, C.Y. Chu, C.L. Lu, W.W. Cheung, K.M.C. and Luk, K.D.K.. Biomed, J.. Mater. Res. Part A, DOI, 10.1002/jbm.a.32008.Google Scholar
35 Sargeant, T.D. Guler, M.O. Oppenheimer, S.M. Mata, A. Satcher, R.L. Dunand, D.C. and Stupp, S.I.. Biomaterials 29, 161 (2008).Google Scholar
36 Stevens, M.M. and George, J.H.. Science 310, 1135 (2005).Google Scholar