No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
The Spallation Neutron Source (SNS), currently under construction at Oak Ridge National Laboratory, is expected to employ a Hg target encased in a stainless steel. Little is known about the metallurgical behavior of this materials engineering system, which will occur in a service environment involving elevated temperatures and intense radiation. Under normal equilibrium conditions, however, Hg is known to be insoluble in and non-reactive with solid Fe and Cr but to form one or more intermetallics with Ni. Hg has been implanted into alloy 304L. After implantations at 400 and 500 °C to a fluence of 3×1016 cm−2 sub-micron sized precipitates of Hg are formed, as judged, for example, from their solidification behavior on cooling during TEM observation. The formation of such a system of microtargets and possible studies employing them as in situ TEM specimens are discussed, which can provide useful empirical information in conjunction with SNS target development.
Work supported by the U. S. Department of Energy, BES-Materials Sciences, under Contract W-31-109-Eng-38.