Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-04T00:04:14.657Z Has data issue: false hasContentIssue false

Fabrication of Anatase TiO2 Thin Film Using Pulsed DC Magnetron Sputtering

Published online by Cambridge University Press:  01 February 2011

Ibrahim A. Al-Homoudi
Affiliation:
Mechanical Engineering Dept, , Wayne State University, Detroit, Michigan, 48202.
Linfeng Zhang
Affiliation:
Electrical and Computer Engineering Dept, , Wayne State University, Detroit, Michigan, 48202
Erik F. McCullen
Affiliation:
Electrical and Computer Engineering Dept, , Wayne State University, Detroit, Michigan, 48202
Changhe Huang
Affiliation:
Electrical and Computer Engineering Dept, , Wayne State University, Detroit, Michigan, 48202
L. Rimai
Affiliation:
Electrical and Computer Engineering Dept, , Wayne State University, Detroit, Michigan, 48202
R.J. Baird
Affiliation:
Electrical and Computer Engineering Dept, , Wayne State University, Detroit, Michigan, 48202
K.Y. Simon Ng
Affiliation:
Chemical Engineering and Material Science Dept., , Wayne State University, Detroit, Michigan, 48202.
R. Naik
Affiliation:
Physics and Astronomy Dept., Wayne State University, Detroit, Michigan, 48202.
G.W. Auner
Affiliation:
Electrical and Computer Engineering Dept, , Wayne State University, Detroit, Michigan, 48202
G. Newaz
Affiliation:
Mechanical Engineering Dept, , Wayne State University, Detroit, Michigan, 48202.
Get access

Abstract

TiO2 thin films (500 – 1000 nm in thickness) were deposited using pulsed DC magnetron reactive sputtering, on glass substrates. The depositions used a Ti source in an Ar+O2 gas mixture with different parameters of power (350 - 500W), substrate temperature (no additional heat - 400°C), growth pressure (3.0 - 5.0 mTorr) and oxygen gas flow rate (6.0 - 8.0 sccm). The x-ray diffractions (XRD) show amorphous and/or anatase phases depending on the deposition conditions. The films were found to be amorphous at lower substrate temperature and at lower powers. The sample with 4 mTorr, 400W of power, a substrate temperature of 250 C with 7.0 sccm of oxygen flow has the best crystalline quality. The temperature dependent electrical conductivity measurement in air for the above films shows an exponential increase in conductivity with temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mergel, D., Buschendorf, D., Eggert, S., Grammes, R., Samset, B., Thin Solid Films 371 (2000) 218.Google Scholar
[2] Rogers, K.D., Lane, D.W., Painter, J.D., Chapman, A., Thin Solid Films 466 (2004) 97.Google Scholar
[3] Jun, Peng, Duren, Liu, Sensors and Actuators B 66 (2000) 210.Google Scholar
[4] Radecka, Marta, Zakrzewska, Katarzyna, Rekas, Mieczysław, Sensors and Actuators B 47 (1998) 194.Google Scholar
[5] Ferroni, M., Guidi, V., Martinelli, G., Faglia, G., Nelli, P., Sberveglieri, G., NanoStructured Materials, Vol. 7. No. 7 (1996) 709.Google Scholar
[6] Tang, H., Prasad, K., Sanjines, R., levy, F., Sensors and actuators B 26–27 (1995) 71.Google Scholar
[7] Carotta, M.C., Ferroni, M., Gnani, D., Guidi, V., Merli, M., Martinelli, G., Casale, M.C., Notaro, M., Sensors and Actuators B 58 (1999) 310.Google Scholar
[8] Miao, L., Jin, P., Kaneko, K., Terai, A., Nabatova-Gabain, N., Tanemura, S., Applied Surface Science, 212 (2003) 255.Google Scholar
[9] Sekiya, T., Ohta, S., Kamei, S., Hanakawa, M., Kurita, S., Journal of Physics and Chemistry of Solids, 62 (2001) 717.Google Scholar
[10] Bennett, Jean M., Pelletier, Emile, Albrand, G., Borgogno, J. P., Lazarides, B., Carniglia, Charles K., Schmell, R. A., Allen, Thomas H., Tuttle-Hart, Trudy, Guenther, Karl H., and Saxer, Andreas, Applied Optics vol. 28, No. 15, 1989.Google Scholar
[11] Ikezawa, Shunjiro, Mutsuga, Futoshi, Kubota, Takanori, Suzuki, Ren, Baba, Kiyohide, Koh, Shinken, Yoshioka, Toshitaro, Nishiwaki, Akira, Kida, Keisuke, Ninomiya, Yoshihiko, Wakita, Koichi, Vacuum 59 (2000) 514.Google Scholar
[12] Yamashita, H., Harada, M., Misaka, J., Nakao, H., Takeuchi, M., Anpo, M., Nuclear Instruments and Methods in Physics Research B 206 (2003) 889.Google Scholar
[13] JCPDS, International Center for Diffraction Data, 1995-2000, USA.Google Scholar
[14] Cullity, B. D., Elements of x-ray diffraction, second edition, Addison-wesley, USA 1978.Google Scholar
[15] Huber, Bernd, Gnaser, Hubert, Ziegler, Christiane, Surface Science 566 (2004) 419.Google Scholar
[16] Huber, Bernd, Brodyanski, Alexander, Scheib, Michael, Orendorz, Adam, Ziegler, Christiane, Gnaser, Hubert, Thin Solid Films (2004) article in press.Google Scholar
[17] Dittrich, Th., Weidmann, J., Timoshenko, V.Yu., Petrov, A.A., Koch, F., Lisachenko, M.G., Lebedev, E., Materials Science and Engineering B 69 (2000) 489.Google Scholar