Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T06:10:37.340Z Has data issue: false hasContentIssue false

Fabrication of Freestanding Graphene Nanoribbon Network by Utilizing Laser Technology

Published online by Cambridge University Press:  22 May 2014

Hai H. Van
Affiliation:
Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering; High-Performance Materials Institute, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32310, U.S.A.
Kaelyn Badura
Affiliation:
Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering; High-Performance Materials Institute, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32310, U.S.A.
Mei Zhang
Affiliation:
Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering; High-Performance Materials Institute, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32310, U.S.A.
Get access

Abstract

Laser is used to produce graphene nanoribbons (GNRs) by unzipping carbon nanotubes (CNTs). It is found that laser can not only unzip CNTs, but also join GNRs through covalent reconnections. Because the CNTs are aligned in a freestanding CNT sheet, the laser irradiation process results in a freestanding GNR network. Experimental results show that the expected results can be achieved by controlling the delivery of laser beam energy to the sheet. Moreover, this process is a solid-state process and a scalable manufacturing process.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

V Kosynkin, D., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K., and Tour, J. M., Nature, 458, 872 (2009).CrossRefGoogle Scholar
Elías, A. L., Botello-Méndez, A. R., Meneses-Rodríguez, D., Jehová González, V., Ramírez-González, D., Ci, L., Muñoz-Sandoval, E., Ajayan, P. M., Terrones, H., and Terrones, M., Nano Letter,10, 366 (2010).CrossRefGoogle Scholar
Jiao, L., Zhang, L., Wang, X., Diankov, G., and Dai, H., Nature, 458, 877 (2009).CrossRefGoogle Scholar
Mohammadi, S., Kolahdouz, Z., Darbari, S., Mohajerzadeh, S., and Masoumi, N., Carbon, 52, 451 (2013).CrossRefGoogle Scholar
Wei, D., Xie, L., Lee, K. K., Hu, Z., Tan, S., Chen, W., Sow, C. H., Chen, K., Liu, Y., and Wee, A. T. S., Nature Communication, 4, 1374 (2013).CrossRefGoogle Scholar
Kumar, P., Panchakarla, L. S., and Rao, C. N. R., Nanoscale, 3, 2127 (2011).CrossRefGoogle ScholarPubMed
Kim, K., Sussman, A., and Zettl, A., ACS Nano, 4, 1362 (2010).CrossRefGoogle Scholar
Morelos-Gómez, A., Vega-Díaz, S. M., González, V. J., Tristán-López, F., Cruz-Silva, R., Fujisawa, K., Muramatsu, H., Hayashi, T., Mi, X., Shi, Y., Sakamoto, H., Khoerunnisa, F., Kaneko, K., Sumpter, B. G., Kim, Y. A., Meunier, V., Endo, M., Muñoz-Sandoval, E., and Terrones, M., ACS Nano, 6, 2261 (2012).CrossRefGoogle Scholar
Cano-Márquez, A. G., Rodríguez-Macías, F. J., Campos-Delgado, J., Espinosa-González, C. G., Tristán-López, F., Ramírez-González, D., Cullen, D. A., Smith, D. J., Terrones, M, and Vega-Cantú, Y. I.;, Nano Letter, 9, 1527 (2009).CrossRefGoogle Scholar
Zhang, M., Fang, S., Zakhidov, A. A., Lee, S. B., Aliev, A. E., Williams, C. D., Atkinson, K. R., and Baughman, R. H., Science, 309, 1215 (2005).CrossRefGoogle Scholar
Sugioka, K., Meunier, M., and Piqué, A., Eds., in Laser Precision Microfabrication, (Springer 2010), p. 95.CrossRefGoogle Scholar
Liu, M., Jiang, K. L., Li, Q. Q., Yang, H. T., and Fan, S. S., Solid State Phenomena, 121123, 331336 (2007).CrossRefGoogle Scholar
Xiao, L., Chen, Z., Feng, C., Liu, L., Bai, Z., Wang, Y., Qian, L., Zhang, Y., Li, Q., Jiang, K. and Fan, S., Nano Lett., 8, 45394545 (2008).CrossRefGoogle Scholar