Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T03:02:41.244Z Has data issue: false hasContentIssue false

Fabrication of GaAs/AlGaAs Quantum Well Lasers with MeV Oxygen Ion Implantation*

Published online by Cambridge University Press:  26 February 2011

Fulin Xiong
Affiliation:
Divisions of Physics, Mathematics and Astronomy, and Engineering and Applied Sciences, 200–36, California Institute of Technology, Pasadena, CA 91125
T. A. Tombrello
Affiliation:
Divisions of Physics, Mathematics and Astronomy, and Engineering and Applied Sciences, 200–36, California Institute of Technology, Pasadena, CA 91125
H. Wang
Affiliation:
Divisions of Physics, Mathematics and Astronomy, and Engineering and Applied Sciences, 200–36, California Institute of Technology, Pasadena, CA 91125
T. R. Chen
Affiliation:
Divisions of Physics, Mathematics and Astronomy, and Engineering and Applied Sciences, 200–36, California Institute of Technology, Pasadena, CA 91125
H. Z. Chen
Affiliation:
Divisions of Physics, Mathematics and Astronomy, and Engineering and Applied Sciences, 200–36, California Institute of Technology, Pasadena, CA 91125
H. Morkoc
Affiliation:
Divisions of Physics, Mathematics and Astronomy, and Engineering and Applied Sciences, 200–36, California Institute of Technology, Pasadena, CA 91125
A. Yariv
Affiliation:
Divisions of Physics, Mathematics and Astronomy, and Engineering and Applied Sciences, 200–36, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

MeV oxygen ion implantation in GaAs/AlGaAs has been shown to provide a simple and very promising technique for quantum well laser fabrication. A l0μm stripe single quantum well (SQW) graded-index separation confinement heterostructure (GRINSCH) laser made in this way has achieved high performance with high quantum differential efficiency, low threshold current and good electrical isolation characteristics. MeV oxygen ion implantation with optimum thermal annealing produces a deep buried electrical isolation layer in n-type GaAs and reduces optical absorption in GaAs/AlGaAs quantum well structures. Ion implantation stimulated compositional disordering as well as implanted oxygen-related deep level traps may be considered as important effects for electrical and optical modification of interfaces in GaAs and AIGaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Support in part by National Science Foundation [DMR86-15641]

References

REFERENCES

1. Tombrello, T. A., Journal de Physique, (1988), in press.Google Scholar
2. Yariv, Amnon, Quantum Electronics, 3rd ed. (John Wiley and Sons Press, New York, 1989), p. 252.Google Scholar
3. Dyment, J. C., D'Asaro, L. A., North, J. C., Miller, B. I., and Ripper, J. E., Proc. IEEE, 60, 726 (1972).CrossRefGoogle Scholar
4. Steeples, K., Saunders, I. J., and Smith, J. G., IEEE Electron Device Letters, EDL-1(5), 72 (1980).CrossRefGoogle Scholar
5. Blum, J. M., McGroddy, J. C., McMullin, P. G., Shih, K. K., Smith, A. W., and Ziegler, J. F., IEEE, J. Quantum Electronics, QE-11 413 (1975).CrossRefGoogle Scholar
6. Beneking, H., Grote, N., Krautle, H., and Roth, W., IEEE J. Quant. Elect. OE-16, 500 (1980).CrossRefGoogle Scholar
7. Uchiyama, S., Moriki, K., Iga, K., and Furukavwa, S., Japan. J. Appl. Phys. Lett. 21, L639 (1982).CrossRefGoogle Scholar
8. Wilt, D. P., Schwartz, B., Tell, B., Beebe, E. D., and Nelson, R. T., Appl. Phys. Lett. 44, 290 (1984).CrossRefGoogle Scholar
9. Xiong, F., Tombrello, T. A., Wang, H., Chen, T. R., Chen, H. Z., Morkog, H., and Yariv, A., submitted to Appl. Phys. Lett., (Sept. 1988).Google Scholar
10. Favennec, P. N., Pelous, G. P., Binet, M., and Baudet, P., in Ion Implantation in Semiconductors and Other Materials, edited by Crowder, B. L. (New York, Plenum, 1973), p. 621.CrossRefGoogle Scholar
11. Pearton, S. J., Iannuzzi, M. P., Reynolcs, C. L. Jr, and Peticolas, L., Appl. Phys. Lett., 52, 395 (1988).CrossRefGoogle Scholar
12. Farennec, P. N., J. Appl. Phys. 47, 2532 (1976).CrossRefGoogle Scholar
13. Beneking, H., Grote, N., and Krautle, H., Solid State Electronics 22, 1039 (1979).CrossRefGoogle Scholar
14. Bhansali, V., Senior Thesis, Caltech, (May 1987).Google Scholar
15. Schwarz, S. A., Venkatesan, T., Bhat, R., IRoza, M, Yoon, H. W., Arakawa, Y., and Mei, P., Mat. Res. Soc. Sym. Proc. Vol.6 321 (1986).Google Scholar
16. Gavrilovic, P., Meehan, K.. Epler, J. E., Holbnyak, N. Jr., Burnham, R. D., Thornton, R. L., and Streifer, W., Appl. Phys. Lett. 46, 857 (1985).CrossRefGoogle Scholar
17. Hirayama, Y., Suzuki, Y., and Okamoto, H., Jap. J. Appl. Phys., 11, 1498. (1985).CrossRefGoogle Scholar
18. Venkatesan, T., Schwarz, S. A., Hwang, D. M., Bhat, R., Koza, M., Yoon, H. W., Mei, P., Arakawa, Y., and Yariv, A., Appl. Phy,. lett. 49, 701 (1986).CrossRefGoogle Scholar
19. Schwarz, S. A., private communication, unpublished.Google Scholar
20. Beneking, H., Grote, N., Krautle, H., and R~th, W., IEEE J. of Quantum electronis, QE-16, 500, (1980).CrossRefGoogle Scholar
21. Xiong, F., Tombrello, T. A., Chen, T. R., Wang, H., Zhuang, Y. H., and Yariv, A., Nucl. Instr. and Meth. B (1989), in press.Google Scholar