Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-13T06:48:17.238Z Has data issue: false hasContentIssue false

Fabrication of p-i-n solar cells utilizing ZnInON by RF magnetron sputtering

Published online by Cambridge University Press:  16 March 2015

Koichi Matsushima
Affiliation:
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
Ryota Shimizu
Affiliation:
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
Tomoaki Ide
Affiliation:
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
Daisuke Yamashita
Affiliation:
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
Hyunwoong Seo
Affiliation:
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
Kazunori Koga
Affiliation:
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
Masaharu Shiratani
Affiliation:
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
Naho Itagaki
Affiliation:
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan PRESTO, Japan science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
Get access

Abstract

We succeeded in photovoltaic power generation of p-i-n solar cells utilizing epitaxial ZnInON film with a wide band gap of 3.1 eV as the intrinsic layer, suitable for a top cell of tandem solar cells. The solar cell shows a high open circuit voltage (Voc) of 1.68 V under solar simulator light irradiation of 3.2 mW/cm2. The solar cell performance becomes worse under 100 mW/cm2, which is mainly attributed to the leakage current caused by crystal defects and grain boundaries. X-ray diffraction analysis reveals that the ZnInON film has rather large tilt and twist angles and a high dislocation density of 7.62×1010 cm-2. Such low crystallinity is a bottleneck for high performance of the solar cells. Our results demonstrate a potential of epitaxial ZnInON films as an intrinsic layer of wide band gap p-i-n solar cells with a high Voc.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fung, T.Y.Y. and Yang, H., Energ. Buildings 40, 341 (2008).CrossRefGoogle Scholar
Chau, J.L.H., Chen, R.T., Hwang, G.L., Tsai, P.Y., and Lin, C.C., Sol. Energ. Mat. Sol. C. 94, 588 (2010).CrossRefGoogle Scholar
Tonooka, K., Bando, H., and Aiura, Y., Thin Solid Films 445, 327 (2003).CrossRefGoogle Scholar
Matsushima, K., Hirose, T., Kuwahara, K., Yamashita, D., Uchida, G., Seo, H., Kamataki, K., Koga, K., Shiratani, M., and Itagaki, N., Jpn. J. Appl. Phys. 52, 11NM06 (2013).CrossRefGoogle Scholar
Itagaki, N., Iwasaki, T., Watanabe, M., and Den, T., U.S. Patent No. 8274078 (6 November 2008).Google Scholar
Itagaki, N., Shiratani, M., and Uchida, G., PCT/JP2013/055973 (3 May 2013).Google Scholar
Itagaki, N., Matsushima, K., Yamashita, D., Seo, H., Koga, K., and Shiratani, M., Mater. Res. Express 1, 036405 (2014).CrossRefGoogle Scholar
Zhang, S.B., Wei, S.H., and Zunger, A., Phys. Rev. B 63 075205 (2001).CrossRefGoogle Scholar
Chierchia, R., Bottcher, T., Heinke, H., Einfeldt, S., Figge, S., and Hommel, D., J. Appl. Phys. 93, 8918 (2003).CrossRefGoogle Scholar
Tang, H., Webb, J., Bardwell, J., Leathem, B., Charbonneau, S., and Raymond, S., J. Electron. Mater. 29, 3 (2000).CrossRefGoogle Scholar
Ma, Q.Y., Yang, E.S., and Chang, C.A., J. Appl. Phys. 66, 1866 (1989).CrossRefGoogle Scholar