Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T23:13:15.406Z Has data issue: false hasContentIssue false

Fabrication of PZT Based Capacitor with SrRuO3 Electrode for Memory Device Applications

Published online by Cambridge University Press:  10 February 2011

Ashok Kumar
Affiliation:
Advanced Thin Film Laboratory, Department of Electrical and Computer Engineering, University of South Alabama, Mobile, AL 36688
H. Rahman
Affiliation:
Advanced Thin Film Laboratory, Department of Electrical and Computer Engineering, University of South Alabama, Mobile, AL 36688
M. Shamsuzzoha
Affiliation:
Department of Metallurgical & Materials Engineering, University of Alabama, Tuscaloosa, AL, 35487
Get access

Abstract

Strontium ruthenium oxide (SrRuO3) was deposited on Pt/(100)Si substrates at varying temperatures and 300 mTorr oxygen pressure using the pulsed laser deposition method and was found to be highly crystalline and textured when deposited over 450°C. After achieving highly crystalline SrRuO3 films, capacitors using the ferroelectric material - PZT (PbZr0.5Ti0.48O3) were successfully fabricated on Pt/(100)Si substrates. The ferroelectric properties of the films were determined by the RT66A Standardized Ferroelectric Test System. The structural properties of the films were analyzed by X-ray diffraction. Transmission electron microscopy was used to determine the crystallinity and quality of interfaces among different layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, J. F., and Araujo, C. A. Paz de, “Ferroelectric memories,” Science, 246, 14001405 (1989)Google Scholar
2. Auciello, O., Mantese, L., Duarte, J., Chen, X., Rou, S. H., Kingon, A. I., Schreiner, A. F., and Krauss, A. R., J. Appl. Phys. 73 (10) 51975207 (1993)Google Scholar
3. Kingon, A. I., Streiffer, S. K., Basceri, C. and Summerfelt, S. R., Mater. Res. Bull., 71, 46(1996)Google Scholar
4. Eom, C. B., Dover, R. B. van, Phillips, J. M., Werder, D. J., Marshall, J. H., Chen, C. H., Cava, R. J., and Fleming, R. M., Appl. Phys. Lett., 63, 25702572 (1993)Google Scholar
5. Gan, Q., Rao, R. A., and Eom, C. B., Appl. Phys. Lett., 70, 1962 (1997)Google Scholar
6. Jia, Q. X., Chu, F., , Adams, Wu, X. D., Hawley, M., Cho, J. H., Findikoglu, A. T., J. Mater. Res., Vol. 11, No.9 (1996)Google Scholar
7. Wu, X. D., Foltyn, S. R., Dye, R. C., Coulter, Y., Appl. Phys. Lett. 62, 2434 (1993).Google Scholar
8. Chen, C. L., Cao, Y., Huang, Z. J., Jiang, Q. D., Zhang, Z. H., Sun, Y. Y., Kang, W. N., Dezanetti, L. M., Chu, W. K., and Chu, C. W., Appl. Phys. Lett. 71,1047(1997)Google Scholar
9. Ramesh, R., Gilchrist, H., Sands, T., Kermidas, V. G., Haakenaasen, R., and Fork, D. K., Appl. Phys. Lett., Vol. 63(9), 123125 (1998)Google Scholar
10. Chrisley, D. B. and Huber, G. K., “Pulsed Laser Deposition of Thin FilmsJohn Wiley and Sons Inc., (1994)Google Scholar
11. Kjendal, D., Thesis, M. S., University of South Alabama (1995)Google Scholar
12. Datt, R., Lichtenwalner, D. J., Auciello, O., and Kingon, A. I., Appl. Phys. Lett. 64 (20), 26732675 (1994)Google Scholar