Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T02:22:52.847Z Has data issue: false hasContentIssue false

Fast Dynamics in Glass-Formers: Relation to Fragility and the Kohlrausch Exponent

Published online by Cambridge University Press:  10 February 2011

K. L. Ngai
Affiliation:
Naval Research Laboratory, Washington, DC 20375–5320USA, ngai@estd.nrl.navy.mil
C. M. Roland
Affiliation:
Naval Research Laboratory, Washington, DC 20375–5320USA, ngai@estd.nrl.navy.mil
Get access

Abstract

From the Raman spectra and related inferences from low temperature specific heat data, Sokolov and coworkers have established that the ratio of the quasielastic and vibrational contributions at low temperatures (5∼10K) up to Tg correlates well with the degree of fragility and β of the glass-former. As pointed out by Sokolov (see his contribution in this Volume) such a correlation between the fast dynamics and structural a-relaxation at Tg(i.e., m and β) is intriguing, since at and below Tg, the α-relaxation time τα is more than twelve orders of magnitude longer than the quasielastic contribution and the boson peak. We show in this paper how the Coupling Model (CM) may provide an explanation for this correlation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sokolov, A.P., Rössler, E., Kisliuk, A., and Quitmann, D., Phys. Rev. Lett. 71, 2002 (1993).Google Scholar
2. Sokolov, A.P. et al., J. Non-Cryst. Solids 172–174, 138 (1994).Google Scholar
3. Amorphous Solids: Low-Temperature Properties, edited by Phillips, W.A., (Springer, Berlin 1981).Google Scholar
4. Sokolov, A.P., in this Volume.Google Scholar
5. Brodin, A., Engberg, D., Torell, L.M., Börjesson, L., Sokolov, A.P., Phys. Rev. B 53, 11511(1996).Google Scholar
6. Sokolov, A.P., Buchenau, U., Steffen, W., Frick, B. and Wischnevski, A., Phys. Rev. B 52, 3. R9815(1995).Google Scholar
7. Buchenau, U., Wischnevskii, , Richter, D., and Frick, B., Phys. Rev. Lett. 77, 4035 (1996).Google Scholar
8. Duval, E., Boukenter, A., Achibat, T., J. Phys.:Cond. Matt. 2, 10227 (1990).Google Scholar
9. Plazek, D.J. and Ngai, K.L., Macromolecules 24, 1222 (1991);Google Scholar
Ngai, K.L. and Roland, C.M., Macromolecules 26, 6824 (1993).Google Scholar
10. Böhmer, R., Ngai, K.L., Angeli, C.A. and Plazek, D.J., J. Chem. Phys. 94, 3018 (1994).Google Scholar
11. Ngai, K.L., Steffen, W. and Sokolov, A.P., J. Chem. Phys. in press (1997).Google Scholar
12. Ngai, K.L. Comments Solid State Phys. 9, 127(1979).Google Scholar
13. Ngai, K.L. and White, C.T., Phys. Rev. B 20, 2475 (1979).Google Scholar
14. Ngai, K.L. and Tsang, K.Y., Macromol, Chem. Macromol. Symp. 90, 95 (1995).Google Scholar
15. Rendeli, R.W., Phys. Rev. E 48, R17 (1993).Google Scholar
16. Tsang, K.Y. and Ngai, K.L. Physical Review E 54, R3067 (1996).Google Scholar
17. For various applications of the coupling model see Ngai, K.L. in Relaxational Properties in Disordered Systems, edited by Richert, R. and Blumen, A.. Springer, p. 89 (1995).Google Scholar
18. Porter, C.E., Ststistical Theories of Spectra: Fluctuations. Academic, New York (1965).Google Scholar
19. Berry, M.V., Proc. Roy. Soc. London A423, 219 (1989).Google Scholar
20. Gutzwiller, M.C., Chaos in Classical and Quantum Mechanics. Springer, Berlin (1990).Google Scholar
21. McKay, R.S. and Meiss, J.D. eds, Hamiltonian Dynamic Systems. Adam Hilger, Bristol (1987).Google Scholar
22. Tsironis, G.P. and Aubry, S. Phys. Rev. Lett. 77, 5225 (1996).Google Scholar
23. Colmenero, J., Arbe, A. and Alegria, A., Phys. Rev. Lett. 71, 2603 (1993).Google Scholar
24. Zorn, R., Arbe, A., Colmenero, J., Frick, B., Richter, D., and Buchenau, U., Phys. Rev. E 52, 781 (1995).Google Scholar
25. Roland, C.M., Ngai, K.L. and Lewis, L.J., J. Chem. Phys. 103, 4632 (1995).Google Scholar
26. Cramer, C., Funke, K. and Saatkamp, T., Phil. Mag. B71, 701 (1995).Google Scholar
27. Cramer, C., Funke, K., Buscher, M., Happe, A., Saatkamp, T., and Wilmer, D., Phil. Mag. B71, 713(1995).Google Scholar
28. Ngai, K.L., Cramer, C., Saatkamp, T., and Funke, K., in Non-Equilibrium Phenomena in Supercooled Fluids. Glasses, and Amorphous Materials, edited by Giordono, M., Leporini, D. and Tosi, M.P., World Scientific, Singapore (1996), pp. 322.Google Scholar
29. Ngai, K.L. and Rendell, R.W., in Experimental and Theoretical Approaches to Supercooled Liquids: Advances and Novel Applications, edited by Fourkas, J., Kivelson, D., Mohanty, U. and Nelson, K. American Chemical Society, Washington, DC (1997).Google Scholar
30. Tsironis, G.P., private communication.Google Scholar
31. Gochiyaev, V.Z., Malinovsky, V.K., Novikov, V.N. and Sokolov, A.P., Phil. Mag. B 63, 777 (1991).Google Scholar
32. Winterling, G., Phys. Rev. B 12, 2432 (1975).Google Scholar
33. Jäckie, J. in Ref. 3.Google Scholar
34. Buchenau, U. et al. Phys. Rev. Lett. 60, 1318 (1988).Google Scholar
35. Novikov, V.N., submitted to Phil. Mag. B.Google Scholar
36. Flach, S. and Siewert, J., Phys. Rev. B 47, 14910 (1993).Google Scholar
37. Flach, S. and Siewert, J., J. Phys.:Condens. Matter 4, L363 (1992).Google Scholar
38. Flach, S. and Mutschke, G., Phys. Rev. E 49, 5018 (1994).Google Scholar
39. Roe, R.J., J. Chem. Phys. 100, 1610 (1994).Google Scholar
40. Signorini, G.F., Barrat, J.L., and Klein, M.L., J. Chem. Phys. 92, 1294 (1990).Google Scholar
41. Lewis, L.J. and Wahnström, , Phys. Rev. E 50, 3865 (1994).Google Scholar
42. Smith, W., Gillen, W., and Greaves, G.N., J. Chem. Phys. 103 (1995).Google Scholar
43. Angell, C.A., Poole, W., and Shao, J., Nuovo Cimento 16, 993 (1994).Google Scholar
44. Roland, C.M. and Ngai, K.L., J. Chem. Phys. 104, 2967 (1996).Google Scholar
45. Roland, C.M. and Ngai, K.L., J. Chem. Phys. 106, 1187 (1997).Google Scholar
46. Ngai, K.L. and Roland, C.M., J. Phys. Chem. in press (1997).Google Scholar
47. Zorn, R., Richter, D., Frick, B. and Farago, B., Physica A 201, 52 (1993).Google Scholar
48. Kartini, E. et al., Phys. Rev. B, 54, 6292 (1996).Google Scholar
49. Kiebel, M., Bartsch, E., Debus, O., Fujara, F., Petry, W. and Sillescu, H., 1992, Phys. Rev. B, 45, 10310.Google Scholar
50. Lebon, M.J., Dreyfus, C., Li, G., Aouadi, A., Cummins, H.Z. and Pick, R.M., Phys. Rev. E 51, 4537 (1995).Google Scholar
51. Ngai, K.L. and Roland, C.M., Phys. Rev. E 54, 6969 (1996).Google Scholar
52. Wuttke, J., Petry, W., Coddens, G. and Fujara, F., Phys. Rev. E 52, 4026 (1995);Google Scholar
see Comment on this work by Ngai, K.L. and Roland, C.M., PhysRev. E 55, 2069 (1997).Google Scholar
53. Sindzingre, P. and Klein, M., J. Chem. Phys. 96, 4681 (1992).Google Scholar
54. Götze, W. and Sjögren, L., Rep. Prog. Phys. 55, 241 (1992).Google Scholar
55. We put relaxation of the fast relaxation process inside quotation marks when relating it to the β-process of MCT because the latter is not really a relaxation process in the conventional sense.Google Scholar
56. Wuttke, J., Petry, W., and Fujara, F., Phys. Rev. E 55, 2071 (1997).Google Scholar