Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-04T05:45:54.819Z Has data issue: false hasContentIssue false

Feasibility of spoof surface plasmon waveguide enabled ultrathin room temperature THz GaN quantum cascade laser

Published online by Cambridge University Press:  13 February 2014

Greg Sun
Affiliation:
University of Massachusetts Boston, Boston, Massachusetts 02125, U.S.A.
Jacob B. Khurgin
Affiliation:
Johns Hopkins University, Baltimore, Maryland 21218, U.S.A.
Din Ping Tsai
Affiliation:
National Taiwan University, Taipei, Taiwan, R.O.C.
Get access

Abstract

We propose and study the feasibility of a THz GaN/AlGaN quantum cascade laser (QCL) consisting of only five periods with confinement provided by a spoof surface plasmon (SSP) waveguide for room temperature operation. The QCL design takes advantages of the large optical phonon energy and the ultrafast phonon scattering in GaN that allow for engineering favorable laser state lifetimes, and the SSP waveguide provides the optical confinement for the ultrathin QCL. Our analysis has shown that the waveguide loss is sufficiently low for the QCL to reach its threshold at the injection current density around 6 kA/cm2 at room temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kohler, R., Tredicucci, A., Beltram, F., Beere, H. E., Linfield, E. H., Davies, A. G., Ritchie, D., Iotti, R. C., and Rossi, F., Nature 417, 156159 (2002).CrossRefGoogle Scholar
Williams, B. S., Kumar, S., Hu, Q., and Reno, J. L., Opt. Express 13, 33313339 (2005).CrossRefGoogle Scholar
Belkin, M. A., Fan, J. A., Hormoz, S., Capasso, F., Khanna, S. P., Lachab, M., Davies, A. G., and Linfield, E. H., Opt. Express 16, 32423248 (2008).CrossRefGoogle Scholar
Belkin, M. A., Wang, Q. J., Pfl¨ugl, C., Belyanin, A., Khanna, S. P., Davies, A. G., Linfield, E. H., and Capasso, F., IEEE Sel. Top. Quantum Electron. 15, 952967 (2009).CrossRefGoogle Scholar
Kumar, S., Chan, C.W. I., Hu, Q., and Reno, J. L., Nat. Phys. 7, 166171 (2011).CrossRefGoogle Scholar
Fathololoumi, S., Dupont, E., Chan, W.I., Wasilewski, Z. R., Laframboise, S. R., Ban, D., Mátyás, A., Jirauschek, C., Hu, Q., and Liu, H. C., Opt. Express 20, 38663876 (2012).CrossRefGoogle Scholar
Sun, G. and Soref, R. A., Khurgin, J. B., Superlattices and Microstructures 37, 107113 (2005).CrossRefGoogle Scholar
Iizuka, N., Kaneko, K., Suzuki, N., Asano, T., Noda, S., and Wada, O., Appl. Phys. Lett. 77, 648650 (2000).CrossRefGoogle Scholar
Heber, J. D., Gmachl, C., Ng, H. M., and Cho, A. Y., Appl. Phys. Lett. 81, 12371239 (2002).CrossRefGoogle Scholar
Pendry, J. B., Martin-Moreno, L., Garcia-Vidal, F. J., Science 305, 847848 (2004).CrossRefGoogle Scholar
Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T., Wolff, P. A., Nature 391, 667669 (1998).CrossRefGoogle Scholar
Murray, W. A. and Barnes, W. L., Adv. Mater. 19, 37713782 (2007).CrossRefGoogle Scholar
Rhodes, C., Franzen, S., Maria, J. P., Losego, M., Leonard, D. N., Laughlin, B., Duscher, G., and Weibel, S., J. Appl. Phys. 100, 054905 (2006).CrossRefGoogle Scholar
Sun, G., Khurgin, J. B., and Tsai, D. P., Optics Express 21, 2805628061 (2013)Google Scholar
Lei, T., Fanciullil, M., Molnarl, R. J., Moustakasl, T. D., Graham, R. J., and Scanlon, J., Appl. Phys. Lett. 59, 944946 (1991).CrossRefGoogle Scholar
Fiorentini, V., Bernardini, F., and Ambacher, O., Appl. Phys. Lett. 80, 12041206 (2002).CrossRefGoogle Scholar
Ünlü, H. and Asenov, A., J. Phys. D: Appl. Phys. 35, 591594 (2002).CrossRefGoogle Scholar
Luo, H., Laframboise, S. R., Wasilewski, Z. R., Aers, G. C., and Liu, H. C., Appl. Phys. Lett. 90, 041112 (2007).CrossRefGoogle Scholar
Sun, G. and Khurgin, J. B., IEEE J. Quantum Electron. QE-29, 11041111 (1993).CrossRefGoogle Scholar
Fan, W. J., Li, M. F., Chong, T. C., and Xia, J. B., J. Appl. Phys. 79, 188194 (1996).CrossRefGoogle Scholar
Khurgin, J. B. and Dikmelik, Y., Optical Engineering 49, 111110 (2010).CrossRefGoogle Scholar
Rusina, A., Durach, M., Stockman, M. I., J. Appl. Phys. A 100,375378 (2010).CrossRefGoogle Scholar
Maier, S. A., Andrews, S. R., Martin-Moreno, L., Garcia-Vidal, F. J., Phys. Rev. Lett. 97, 176805 (2006).CrossRefGoogle Scholar
Williams, B. S., Kumar, S., Callebaut, H., Hu, Q., and Reno, J. L., Appl. Phys. Lett. 83, 51425144 (2003).CrossRefGoogle Scholar