Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-29T11:28:26.638Z Has data issue: false hasContentIssue false

Femtosecond laser materials processing of a-Si:H below the ablation threshold

Published online by Cambridge University Press:  21 July 2014

B. Soleymanzadeh
Affiliation:
Molecular and Surface Physics, Bielefeld University, D-33615 Bielefeld, Germany
W. Beyer
Affiliation:
Institut für Silizium-Photovoltaik, HZB, Kekuléstrasse 5, D-12489 Berlin, Germany IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
F. Luekermann
Affiliation:
Molecular and Surface Physics, Bielefeld University, D-33615 Bielefeld, Germany
P. Prunici
Affiliation:
Solayer GmbH, Sachsenallee 28, D-01723 Kesselsdorf, Germany
W. Pfeiffer
Affiliation:
Molecular and Surface Physics, Bielefeld University, D-33615 Bielefeld, Germany
H. Stiebig
Affiliation:
Molecular and Surface Physics, Bielefeld University, D-33615 Bielefeld, Germany Institut für Innovationstransfer an der Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
Get access

Abstract

Laser processing of thin-film silicon is a promising approach for the realization of polycrystalline silicon for large area electronics and solar cell applications. In this study we investigate the material modification of amorphous hydrogenated silicon (a-Si:H) with different hydrogen content (30%, 13% and <1%) by means of femtosecond (fs) laser pulses. Depending on the peak fluence applied, hydrogen diffusion/effusion, layer crystallization or material ablation can be achieved. Despite the low absorption coefficient of a-Si:H at the center wavelength of an amplified Titanium Sapphire laser at 790 nm a high local energy deposition close to the surface of the a-Si:H layer is observed, which can be attributed to a nonlinear absorption process.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Matsuyama, T., Terada, N., Baba, T., Sawada, T., Tsuge, S., Wakisaka, K., Tsuda, S., Journal of Non-Crystalline Solids , 198–200 (1996) 940.CrossRefGoogle Scholar
Keevers, M. J., Young, T. L., Schubert, U., Green, M. A., Proc. 22nd European Photovoltaic Solar Energy Conference, Milan, Italy (2007) p.1783 Google Scholar
Haschke, J., Jogschies, L., Amkreutz, D., Korte, L., Rech, B., Solar Energy Materials & Solar Cells , 115 (2013) 7.CrossRefGoogle Scholar
Varlamov, S., Dore, J., Evans, R., Ong, D., Eggleston, B., Kunz, O., Schubert, U., Young, T., Huang, J., Soderstrom, T., Omaki, K., Kim, K., Teal, A., Jung, M., Yun, J., Pakhuruddin, Z. M., Egan, R., , M. A. Solar Energy Materials & Solar Cells (2013).Google Scholar
Lee, M., Moon, S., Hatano, M., Grigoropoulos, C.P., C. P. Appl. Phys. Mater. Sci. Process. 73, 317322 (2001).Google Scholar
Shieh, J.-M. et al. ., Appl Phys Lett 85, 12321234 (2004).CrossRefGoogle Scholar
Nayak, B.K et al. ., Appl. Phys. A 80, 10771080 (2005).CrossRefGoogle Scholar
Ma, Y. J. , et al. ., Opt. Lett. 36, 34313433 (2011).CrossRefGoogle Scholar
Leitch, A. W. R., Weber, J., Alex, V., Material, Science and Engineering B58, 612 (1999). CrossRefGoogle Scholar