Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T14:23:43.007Z Has data issue: false hasContentIssue false

Fermi liquid instabilities and superconductivity near quantum critical points in f-electron materials

Published online by Cambridge University Press:  01 February 2011

M. B. Maple
Affiliation:
Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA 92093
N. A. Frederick
Affiliation:
Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA 92093
J. R. Jeffries
Affiliation:
Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA 92093
P.-C. Ho
Affiliation:
Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA 92093
V. S. Zapf
Affiliation:
Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA 92093
Get access

Abstract

Recent experiments on single crystals of the compounds CeRh1−xCoxIn5 and PrOs4Sb12 are briefly reviewed. The temperature-composition (T-x) phase diagram of the heavy fermion pseudoternary system CeRh1−xCoxIn5, delineating the regions in which superconductivity, antiferromagnetism, and the coexistence of these two phenomena occur, has been established. Entropy vs x isotherms and residual resistivity vs x plots exhibit peaks near the critical concentration xcr ≈ 0.8 at which the Néel temperature appears to vanish (quantum critical point). The filled skutterudite compound PrOs4Sb12 exhibits unconventional superconductivity below Tc = 1.85 K that involves heavy fermion quasiparticles with an effective mass m* ≈ 50 me, where me is the mass of the free electron. The unconventional superconducting state appears to consist of several distinct superconducting phases and to break time reversal symmetry. A high field ordered phase occurs below ∼ 1 K and between ∼ 4.5 T and ∼ 15 T that appears to be associated with quadrupolar order. The heavy fermion state and superconductivity in PrOs4Sb12 may originate from the interaction between Pr3+ electric quadrupole moments and the charges of the conduction electrons. When Ru is substituted for Os in PrOs4Sb12, a minimum in Tc occurs at Pr(Os0.4Ru0.6)4Sb12, suggesting a competition between two types of superconductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, articles in Proceedings of the Conference on Non-Fermi Liquid Behavior in Metals, Santa Barbara, California, 1996, edited by P. Coleman, M. B. Maple, and A. J. Millis, J. Phys.: Condens. Matter 8 (1996).Google Scholar
2. Maple, M. B., de Andrade, M. C., Herrmann, J., Dalichaouch, Y., Gajewski, D. A., Seaman, C. L., Chau, R., Movshovich, R., Aronson, M. C., and Osborn, R., J. Low Temp. Phys. 99, 223 (1995).Google Scholar
3. Löhneysen, H. v., J. Phys.: Condens. Matter 8, 9689 (1996).Google Scholar
4. Maple, M. B., in Some Modern Aspects of the Physics of Strongly Correlated Electron Systems, Aliev, F. G., Gomez-Sal, J. C., Suderow, H., and Villar, R., eds., (Universidad Autonoma de Madrid, Madrid, Spain), p. 39 (2001).Google Scholar
5. Steglich, F., Buschinger, B., Gegenwart, P., Lohnmann, M., Helfrich, R., Langhammer, C., Hellmann, P., Donnevert, L., Thomas, S., Link, A., Geibel, C., Lang, M., Sparn, G., and Assmus, W., J. Phys.: Condens. Matter 8, 9909 (1996).Google Scholar
6. Julian, S. R., Carter, F. V., Grosche, F. M., Haselwimmer, R. K. W., Lister, S. J., Mathur, N. D., McMullan, G. J., Pfleiderer, C., Saxena, S. S., Walker, I. R., Wilson, N. J. W., and Lonzarich, G. G., J. Magn. Magn. Mat. 177–181, 265 (1998).Google Scholar
7. Schofield, A. J., Contemporary Physics 40, 95 (1999).Google Scholar
8. Saxena, S. S., Agarwal, P., Ahllan, K., Grosche, F. M., Haselwimmer, R. K. W., Steiner, M. J., Pugh, E., Walker, I. R., Julian, S. R., Monthoux, P., Lonzarich, G. G., Huxley, A., Sheikin, I., Braithwaite, D., and Flouquet, J., Nature 406, 587 (2000).Google Scholar
9. Bauer, E. D., Dickey, R. P., Zapf, V. S., and Maple, M. B., J. Phys.: Condens. Matter 13, L759 (2001).Google Scholar
10. Thompson, J. D., Movshovich, R., Fisk, Z., Bouquet, F., Curro, N. J., Fisher, R. A., Hammel, P. C., Hegger, H., Hundley, M. F., Jaime, M., Pagliuso, P. G., Petrovic, C., Phillips, N. E., and Sarrao, J. L., J. Magn. Magn. Matt. 226–230, 5 (2001).Google Scholar
11. Hegger, H., Petrovic, C., Moshopoulou, E. G., Hundley, M. F., Sarrao, J. L., Fisk, Z., and Thompson, J. D., Phys. Rev. Lett. 84, 4986 (2000).Google Scholar
12. Petrovic, C., Movshovich, R., Jaime, M., Pagliuso, P. G., Hundley, M. F., Sarrao, J. L., Fisk, Z., and Thompson, J. D., Europhys. Lett. 53, 354 (2001).Google Scholar
13. Petrovic, C., Pagliuso, P. G., Hundley, M. F., Movshovich, R., Sarrao, J. L., Thompson, J. D., and Fisk, Z., J. Phys: Condens. Matter 13, L337 (2001).Google Scholar
14. Bao, W., Pagliuso, P. G., Sarrao, J. L., Thompson, J. D., Fisk, Z., and Lynn, J. W., Phys. Rev. B 64, 020401(R) (2001).Google Scholar
15. Nicklas, M., Borth, R., Lengyel, E., Pagliuso, P. G., Sarrao, J. L., Sidorov, V. A., Sparn, G., Steglich, F., and Thompson, J. D., J. Phys.: Condens. Matter 13, L905 (2001).Google Scholar
16. Sidorov, V. A., Nicklas, M., Pagliuso, P. G., Sarrao, J. L., Bang, Y., Balatsky, A. V., and Thompson, J. D., Phys. Rev. Lett. 89, 157004 (2002).Google Scholar
17. Zheng, G. q., Tanabe, K., Mito, T., Kawasaki, S., Kitaoka, Y., Aoki, D., Haga, Y., and Onuki, Y., Phys. Rev. Lett. 86, 4664 (2001).Google Scholar
18. Kohori, Y., Yamato, Y., Iwamoto, Y., Kohara, T., Bauer, E. D., Maple, M. B., and Sarrao, J. L., Phys. Rev. B 64, 134526 (2001).Google Scholar
19. Movshovich, R., Jaime, M., Thompson, J. D., Petrovic, C., Fisk, Z., Pagliuso, P. G., and Sarrao, J. L., Phys. Rev. Lett. 86, 5152 (2001).Google Scholar
20. Izawa, K., Yamaguchi, H., Matsuda, Y., Shishido, H., Settai, R., and Onuki, Y., Phys. Rev. Lett. 87, 057002 (2001).Google Scholar
21. Tayama, T., Harita, A., Sakakibara, T., Haga, Y., Shishido, H., Settai, R., and Onuki, Y., Phys. Rev. B 65, 180504(R) (2002).Google Scholar
22. Bianchi, A., Movshovich, R., Oeschler, N., Gegenwart, P., Steglich, F., Thompson, J. D., Pagliuso, P. G., and Sarrao, J. L., Phys. Rev. Lett. 89, 137002 (2002).Google Scholar
23. Bianchi, A., Movshovich, R., Capan, C., Lacerda, A., Pagliuso, P. G., and Sarrao, J. L., Phys. Rev. Lett. 91, 187004 (2003).Google Scholar
24. Oeschler, N., Gegenwart, P., Lang, M., Movshovich, R., Sarrao, J. L., Thompson, J. D., and Steglich, F., Phys. Rev. Lett. 91, 076402 (2003).Google Scholar
25. Maki, K. and Tsuneto, T., Prog. Theor. Phys. 31, 945 (1964).Google Scholar
26. Maki, K., Phys. Rev. 148, 362 (1966).Google Scholar
27. Radovan, H. A., Fortune, N. A., Murphy, T. P., Hannahs, S. T., Palm, E. C., Tozer, S. W., and Hall, D., Nature 425, 51 (2003).Google Scholar
28. Martin, C., Agosta, C. C., Tozer, S. W., Radovan, H. A., Palm, E. C., Murphy, T. P., and Sarrao, J. L., cond-mat/0309125 (unpublished).Google Scholar
29. Fulde, P. and Ferrell, R. A., Phys. Rev. 135, A550 (1964).Google Scholar
30. Larkin, A. I. and Ovchinnikov, Y. N., Sov. Phys. JETP 20, 762 (1965).Google Scholar
31. Hall, D., Palm, E. C., Murphy, T. P., Tozer, S. W., Fisk, Z., Alver, U., Goodrich, R. G., Sarrao, J. L., Pagliuso, P. G., and Ebihara, T., Phys. Rev. B 64, 212508 (2001).Google Scholar
32. Settai, R., Shishido, H., Ikeda, S., Murakawa, Y., Nakashima, M., Aoki, D., Haga, Y., Harima, H., and Onuki, Y., J. Phys.: Condens. Matter 13, L627 (2001).Google Scholar
33. Paglione, J., Tanatar, M. A., Hawthorn, D. G., Boaknin, E., Hill, R. W., Ronning, F., Sutherland, M., Taillefer, L., Petrovic, C., and Canfield, P. C., Phys. Rev. Lett. 91, 246405 (2003).Google Scholar
34. Zapf, V. S., Freeman, E. J., Bauer, E. D., Petricka, J., Sirvent, C., Frederick, N. A., Dickey, R. P., and Maple, M. B., Phys. Rev. B. 65, 014506 (2001).Google Scholar
35. Cox, D. L. and Maple, M. B., Physics Today 48, 32 (1995).Google Scholar
36. Kohori, Y., Yamato, Y., Iwamoto, Y., and Kohara, T., Eur. Phys. J. B 18, 601 (2000).Google Scholar
37. Pagliuso, P. G., Petrovic, C., Movshovich, R., Hundley, M. F., Sarrao, J. L., Thompson, J. D., and Fisk, Z., Phys. Rev. B 64, 100503(R) (2001).Google Scholar
38. Jeffries, J. R., Frederick, N. A., Bauer, E. D., Kimura, H., Zapf, V. S., Hof, K.-D., Sayles, T. A., and Maple, M. B., in preparation (unpublished).Google Scholar
39. Maple, M. B., Ho, P.-C., Zapf, V. S., Frederick, N. A., Bauer, E. D., Yuhasz, W. M., Woodward, F. M., and Lynn, J. W., J. Phys. Soc. Jpn. 71 Suppl., 23 (2002).Google Scholar
40. Bauer, E. D., Frederick, N. A., Ho, P.-C., Zapf, V. S., and Maple, M. B., Phys. Rev. B 65, 100506(R) (2002).Google Scholar
41. Maple, M. B., Ho, P.-C., Frederick, N. A., Zapf, V. S., Yuhasz, W. M., and Bauer, E. D., Acta. Phys. Pol. B 34, 919 (2003).Google Scholar
42. Maple, M. B., Bauer, E. D., Frederick, N. A., Ho, P.-C., Yuhasz, W. A., and Zapf, V. S., Physica B 328, 29 (2003).Google Scholar
43. Maple, M. B., Ho, P.-C., Zapf, V. S., Yuhasz, W. M., Frederick, N. A., and Bauer, E. D., Physica C 388–389, 549 (2003).Google Scholar
44. Vollmer, R., Faiβt, A., Pfleiderer, C., Lohneysen, H. V., Bauer, E. D., Ho, P.-C., Zapf, V., and Maple, M. B., Phys. Rev. Lett. 90, 057001 (2003).Google Scholar
45. Oeschler, N., Gegenwart, P., Steglich, F., Frederick, N. A., Bauer, E. D., and Maple, M. B., Acta. Phys. Pol. B 34, 959 (2003).Google Scholar
46. MacLaughlin, D. E., Sonier, J. E., Heffner, R. H., Bernal, O. O., Young, B. L., Rose, M. S., Morris, G. D., Bauer, E. D., Do, T. D., and Maple, M. B., Phys. Rev. Lett. 89, 157001 (2002).Google Scholar
47. Izawa, K., Nakajima, Y., Goryo, J., Matsuda, Y., Osaki, S., Sugawara, H., Sato, H., Thalmeier, P., and Maki, K., Phys. Rev. Lett. 90, 117001 (2003).Google Scholar
48. Aoki, Y., Tsuchiya, A., Kanayama, T., Saha, S. R., Sugawara, H., Sato, H., Higemoto, W., Kodo, A., Ohishi, K., Nishiyama, K., and Kadomo, R., Phys. Rev. Lett. 91, 067003 (2003).Google Scholar
49. Chia, E. E. M., Salamon, M. B., Sugawara, H., and Sato, H., cond-mat/0308454 (unpublished).Google Scholar
50. Broun, D. M., Turner, P. J., Mullins, G. K., Sheehy, D. E., Zheng, X. G., Kim, S. K., Frederick, N. A., Maple, M. B., Hardy, W. N., and Bonn, D. A., submitted to Phys. Rev. Lett. (unpublished)Google Scholar
51. Ho, P.-C., Zapf, V. S., Bauer, E. D., Frederick, N. A., and Maple, M. B., Int. J. Mod. Phys. B 16, 3008 (2002).Google Scholar
52. Ho, P.-C., Frederick, N. A., Zapf, V. S., Bauer, E. D., Do, T. D., Maple, M. B., Christianson, A. D., and Lacerda, A. H., Phys. Rev. B 67, 180508(R) (2003).Google Scholar
53. Frederick, N. A. and Maple, M. B., J. Phys.: Condensed Matter 15, 4789 (2003).Google Scholar
54. Aoki, Y., Namiki, T., Ohsaki, S., Saha, S. R., Sugawara, H., and Sato, H., J. Phys. Soc. Jpn. 71, 2098 (2002).Google Scholar
55. Oeschler, N., Weickert, F., Gegenwart, P., Thalmeier, P., Steglich, F., Bauer, E. D., and Maple, M. B., Phys. Rev. B: Rapid Comm., submitted.Google Scholar
56. Kohgi, M., Iwasa, K., Nakajima, M., Metoki, N., Araki, S., Bernhoeft, N., Mignot, J.-M., Gukasov, A., Sato, H., Aoki, Y., and Sugawara, H., J. Phys. Soc. Jpn. 72, 1002 (2003).Google Scholar
57. Cox, D. L., Phys. Rev. Lett. 59, 1240 (1987).Google Scholar
58. Tayama, T., Sakakibara, T., Sugawara, H., Aoki, Y., and Sato, H., J. Phys. Soc. Jpn. 72, 1516 (2003).Google Scholar
59. See Fulde, P. and Louwenhaupt, M., Adv. Phys. 34, 589 (1986), and references cited therein.Google Scholar
60. Forgan, E. M., Physica B 107, 65 (1981).Google Scholar
61. Fulde, P., Hirst, L. L., and Luther, A., Z. Phys. 230, 150 (1970).Google Scholar
62. Keller, J. and Fulde, P., J. Low Temp. Phys. 4, 289 (1971).Google Scholar
63. Keller, J. and Fulde, P., J. Low Temp. Phys. 12, 63 (1973).Google Scholar
64. McCallum, R. W., Fertig, W. A., Luengo, C. A., Maple, M. B., Bucher, E., Maita, J. P., Sweedler, A. R., Mattix, L., Fulde, P., and Keller, J., Phys. Rev. Lett. 34, 1620 (1975).Google Scholar
65. Frederick, N. A., Do, T. D., Ho, P.-C., Butch, N. P., Zapf, V. S., and Maple, M. B., Phys. Rev. B, in press.Google Scholar
66. Yogi, M., Kotegawa, H., Immamura, Y., Zheng, G. q., Kitaoka, Y., Sugawara, H., and Sato, H., Phys. Rev. B 67, 180501 (2003).Google Scholar