Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T14:09:03.418Z Has data issue: false hasContentIssue false

Fermi-Level Effect, Electric Field Effect, and Diffusion Mechanisms in GaAs Based III-V Compound Semiconductors

Published online by Cambridge University Press:  10 February 2011

T. Y. Tan
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300
C.-H. Chen
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300
U. Gösele
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300 Max-Planck-Institut für Mikrostructurphysik, Weinberg 2, 06120 Halle/Saale, Germany
R. Scholz
Affiliation:
Max-Planck-Institut für Mikrostructurphysik, Weinberg 2, 06120 Halle/Saale, Germany
Get access

Abstract

Diffusion mechanisms and point defects in GaAs and related III-V compounds are discussed. An understanding of the As sublattice situation has been arrived at fairly recently and is presently tentative. Understanding of the Ga sublattice situation has become more acceptable in that experimental results are consistently explained by the Fermi-level effect and the As4 pressure effect. On the Ga sublattice, though controversies still exist, some are readily resolved by noting the role of the electric field produced by semiconductor electrical junctions, physical junctions, and surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Winteler, H. R., Helv. Phys. Acta 44 451 (1970).Google Scholar
2. Deppe, D. G. and Holonyak, N. Jr , J. Appl. Phys. 64, R93 (1988).Google Scholar
3. Tan, T. Y., Gösele, U., and Yu, S., Crit. Rev. Solid Sate Mater. Science 17 47 (1991).Google Scholar
4. Goldstein, B., Phys. Rev. 121 1305 (1961).Google Scholar
5. Palfrey, H., Brown, M., and Willoughby, A., J. Electr. Mater. 12 864 (1983).Google Scholar
6. You, H.-M., Tan, T. Y., Gösele, U. M., Lee, S.-T., Höffler, G. E., Hsieh, K. C., and Holonyak, N. Jr, J. Appl. Phys. 74 2450 (1993).Google Scholar
7. Uematsu, M., Werner, P., Schultz, M., Breitenstein, O., Tan, T. Y., and Gösele, U., Appl. Phys. Lett. 67 2863 (1995).Google Scholar
8. Egger, U., Schultz, M., Werner, P., Breitenstein, O., Tan, T. Y., and Gösele, U., J. Appl. Phys. 81 6 (1997).Google Scholar
9. Schultz, M., Egger, U., Scholz, R., Breitenstein, O., Gösele, U., and Tan, T. Y., J. Appl. Phys. (1998) in press.Google Scholar
10. Tan, T. Y., Mat. Sci. Eng. B 10 227 (1991).Google Scholar
11. Schockley, W. and Last, J. T., Phys. Rev. 107 392 (1957).Google Scholar
12. Tan, T. Y. and Gösele, U., Appl. Phys. Lett. 52, 1240 (1988).Google Scholar
13. Frank, F.C. and Turnbull, D., Phys. Rev. 104 617 (1956).Google Scholar
14. Longini, R.L., Solid-State Electronics 5 127 (1962).Google Scholar
15. Gösele, U., Frank, W., and Seeger, A., Appl. Phys. 23 361 (1980).Google Scholar
16. Jäger, W., Rucki, A., Urban, K., Hettwer, H.-G., Stolwijk, N. A., Mehrer, H., and Tan, T. Y., J. Appl. Phys., 74 4409 (1993).Google Scholar
17. Palfrey, H., Brown, M., and Willoughby, A., J. Electrochem. Soc. 128 2224 (1981).Google Scholar
18. Tan, T.Y., You, H.M., Yu, S., Gösele, U.M., Jäger, W., Boeringer, D.W., Zypman, F., Tsu, R., and Lee, S.-T., J. Appl. Phys. 72 5206 (1992).Google Scholar
19. Wang, L., Hsu, L., Haller, E.E., Erickson, J.W., Fischer, A., Eberl, K., and Cardona, M., Phys. Rev. Lett. 76 2342 (1996).Google Scholar
20. Chang, L. L. and Koma, A., Appl. Phys. Lett. 29 138 (1976).Google Scholar
21. Petroff, P. M., J. Vac. Sci. Technol. 14 973 (1977).Google Scholar
22. Fleming, R. M., McWhan, D. B., Gossard, A. C., Wiegmann, W., and Logan, R. A., J. Appl. Phys. 51 357 (1980).Google Scholar
23. Cibert, J., Petroff, P. M., Werder, D. J., Pearton, S. J., Gossard, A. C., and English, J. H., Appl. Phys. Lett. 49 223 (1986).Google Scholar
24. Schlesinger, T. E., and Kuech, T., Appl. Phys. Lett., 49 518 (1986).Google Scholar
25. Lee, J.-C., Schlesinger, T. E. and Kuech, T. F., J. Vac. Sci. Technol. B5 1187 (1987).Google Scholar
26. Hsieh, K. Y., Lo, Y. C., Lee, J. H., and Kolbas, R. M., Inst. Phys. Conf. Ser. No 96 393 (1989).Google Scholar
27. Laidig, W. D., Holonyak, N. Jr , Camras, M. D., Hess, K., Colman, J. J., Dapkus, P. D., and Bardeen, J., Appl. Phys. Lett. 38 776 (1981).Google Scholar
28. Mei, P., Yoon, H. W., Venkatesan, T., Schwarz, S. A., J. P. and , Harbison, Appl. Phys. Lett. 50 1823 (1987).Google Scholar
29. Deppe, D. G., Holonyak, N. Jr , Hsieh, K. C., Gravrilovic, P., Stutius, W., and Williams, J., Appl. Phys. Lett. 51 581 (1987).Google Scholar
30. Yu, S., Tan, T. Y., and Gosele, U., J. Appl. Phys. 69 3547 (1991).Google Scholar
31. Enquist, P., Hutchby, J. A., and Lyon, T. J. de, J. Appl. Phys. 63 4485 (1988).Google Scholar
32. Tan, T. Y., Yu, S., and Gosele, U., J. Appl. Phys. 70 4823 (1991).Google Scholar
33. Lee, J. W. and Laiadig, W. D., J. Electron. Mater. 13 147 (1984).Google Scholar
34. Zucker, E. P., Hashimoto, A., Fukunaga, T., and Watanabe, N., Appl. Phys. Lett. 54 564 (1989).Google Scholar
35. Kawabe, M., Shimura, N., Hasegawa, F., and Nanchi, Y., Appl. Phys. Lett. 46 849 (1985).Google Scholar
36. Kamata, N., Kobayashi, K., Endo, K., Susuki, T., and Misu, A., Jpn. J. Appl. Phys. 26 1092 (1987).Google Scholar
37. Tan, T. Y., Yu, H.-M., and Gösele, U., Appl. Phys. A 56 249 (1993).Google Scholar
38. Uematsu, M. and Maezawa, K., Jpn. J. Appl. Phys. 29, L527 (1990).Google Scholar
39. MaQuaid, S. A., Newman, R. C., Missous, M., and O'Hagan, S., Appl. Phys. Lett. 61 3008 (1992).Google Scholar
40. You, H.-M., Gösele, U., and Tan, T. Y., J. Appl. Phys. 73 7207 (1993).Google Scholar
41. Olmsted, B. L., Houde-Walter, S. N., and Viturro, R. E., in Advanced III-V Compound Semiconductor Growth, Processing and Devices, eds. Pearton, S. J., Sadana, D. K., and Zawada, J. M., Mater. Res, Soc. Proc. vol. 240 (Mater. Res. Soc., Pittsburgh, PA, 1992) p. 721.Google Scholar
42. Greiner, M. E. and Gibbons, J. F., Appl. Phys. Lett. 44 750 (1984).Google Scholar
43. Kavanagh, K. L., Mayer, J. W., Magee, C. W., Sheets, J., Tong, J., and Woodal, J. M., Appl. Phys. Lett. 47 1208 (1985).Google Scholar
44. Yu, S., Gösele, U., and Tan, T. Y., J. Appl. Phys. 66 2952 (1989).Google Scholar
45.You et al. outdiffusion of SiGoogle Scholar
46. Humer-Hager, T., Treichler, R., Wurzinger, P., Tews, H., and Zweicknagl, P., J. Appl. Phys. 66 181 (1989).Google Scholar
47. Weber, R., Paraskevopoulos, A., Schroeter-Jassen, H., and Bach, H. G., J. Electrochem. Soc. 138 2818 (1991).Google Scholar
48. Haussler, W., Walter, J. W., and Muller, J., in Ion Beam Processing of Advanced Electronic Materials, eds. Cheung, N. W., Marwick, A. D., and Roberto, J. B., Mat. Res. Soc. Symp. Proc. vol. 147 (Mat. Res. Soc., Pittsburgh, PA, 1989) p. 333.Google Scholar
49. Bracht, H., Walukiewicz, W., and Haller, E. E., 1997 Mater. Res. Soc. Fall Meeting, Symposium Q “Semiconductor Process and Device Performeance Modeling” (Boston, Dec. 1-5, 1997).Google Scholar
50. Cohen, R. M., Chen, C. Y., Li, W. M., Simons, D. S., and Chi, P. H., in Defect and Impurity Engineered Semiconductors and Devices, eds. Ashok, S., Chevallier, J., Akasaki, I., Johnson, N. M., and Sopori, B. L., Mater. Res. Soc. Proc. 378 (Mater. Res. Soc., Pittsburgh, PA, 1995) p. 959.Google Scholar
51. Li, W. M., Cohen, R. M., Simons, D. S., and Chi, P. H., Appl. Phys. Lett. 70 3392 (1997).Google Scholar
52. Mei, P., Schwarz, S. A., Venkatesan, T., Schwartz, C. L., and Colas, E., J. Appl. Phys. 65 2165 (1989).Google Scholar