Published online by Cambridge University Press: 21 February 2011
The need for integrated ferroelectrics as charge storage capacitors has increased dramatically not only for use in radiation hardened and commercial non-volatile memories, but also as possible high dielectric material suitable for capacitor applications. These properties combined with a thin film format, offer the capability of forming very compact capacitor structures suitable for MCM applications through Flip-Chip Bonding, or even integrated directly onto MMIC's. In this paper, the material PbZrxTi1-xO3, where x=l, 0.53, and 0.60 has been assessed. Thin films were produced using a sol-gel technique onto metallised thermally oxidised silicon. The effects on film microstructure and crystallinity with variation in the deposition process will be described. The best films were obtained by incorporating excess lead in the starting solutions, and also by the addition of acetylacetone which was used as a solution modifier. It will be demonstrated that fully perovskite films can be readily obtained at temperatures as low as 450°C. The films were normally 0.3-0.44μm thick with grain sizes of the order of 0.2μm. These films exhibited dielectric constants and loss in the range 170-800 and 1-3% respectively. Measurements upto 3MHz, indicated useful performance with low dispersion. The measured Pr and Ec were in the range 16-22μC/cm2, and 60-120kV/cm respectively.