Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T01:10:56.584Z Has data issue: false hasContentIssue false

β-FeSi2 thin-films grown by a pulsed laser deposition

Published online by Cambridge University Press:  17 March 2011

Shin-ichiro Uekusa
Affiliation:
School of Sci. & Tech., Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
Yasuharu Watanabe
Affiliation:
School of Sci. & Tech., Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
Yasuhiro Aida
Affiliation:
School of Sci. & Tech., Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
Noboru Miura
Affiliation:
School of Sci. & Tech., Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
Get access

Abstract

Orthorhombic β-FeSi2 thin-films were prepared on Si(100) and Si(111) substrates by a pulsed laser deposition method. When the substrate temperature was 500°C, β-FeSi2 thin-films were grown on Si(100) and Si(111) substrates. The thin-films grown on Si(100) and Si(111) substrates were polycrystalline and monocrystalline structures, respectively. The values of band-gap energy calculated from transmittance measurements were 0.71-0.72 eV. From Raman scattering measurements, it was found that the distortion due to the lattice mismatch between a β-FeSi2 thin-film and a Si substrate originates in the β-FeSi2/n-Si interface. Moreover, the fine crystals of β-FeSi2 existed in an amorphous thin-film which was grown on Si(111) substrate at room temperature (RT).

From van der Pauw measurements, conduction type, carrier concentration and Hall mobility were p-type, 1018-1021 cm−3 and 200-500 cm2/Vsec, respectively. The p-n diode characteristics of these heterostructure diodes were investigated by I-V and C-V measurements. The results indicate that the carrier distribution agrees with an ideal one-sided slope junction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lange, H., Mat. Res. Soc. Symp. Proc. 402, 307 (1996).Google Scholar
2. Bost, M. C. and Mahan, J. E., J. Appl. Phys. 64, 2034 (1988).Google Scholar
3. Dimitriadis, C. A., Werner, J. H., Logothidis, S., Stuzmann, M., Weber, J. and Nesper, R., J. Appl. Phys. 68, 1726 (1990).Google Scholar
4. Lefki, K., Muret, P., Cherif, N. and Cinti, R. C., J. Appl. Phys. 69, 325 (1991).Google Scholar
5. Grob, E., Riffel, M. and Stonrer, U., J. Mater. Res. 10, 34 (1995).Google Scholar
6. Leong, D., Harry, M., Reeson, K. J. and Homewood, K. P., Nature 387, 686 (1997).Google Scholar
7. Powalla, M. and Herz, K., Appl. Surf. Sci. 65/66, 482 (1993).Google Scholar
8. Lefki, K., Muret, P., Bustrret, E., Boutarek, N., Madar, R., Chevrier, J., Derrien, J., and Brunel, M., Solid State Commun. 80, 791 (1991).Google Scholar
9. Olk, C. H., Yalisove, S. M. and Doll, G. L., Phys. Rev. B 52, 1692 (1995).Google Scholar
10. Katsumata, H., Makita, Y., Kobayashi, N., Shibata, H., Hasegawa, M. and Uekusa, S., Jpn. J. Appl. Phys. 36, 2802 (1997).Google Scholar
11. Rebien, M., Henrion, W., Muller, U. and Gramlich, S., Appl. Phys. Lett. 74, 970(1999).Google Scholar
12. Okajima, K., Wen, C., Ihara, M., Sakata, I. and Yamada, K., Jpn. J. Appl. Phys. 38, 781 (1999).Google Scholar
13. Uekusa, S., Watanabe, Y., Aida, Y., Miura, N., Proc. of Japan-UK Joint Workshop 7779 (2000).Google Scholar