Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T14:13:40.233Z Has data issue: false hasContentIssue false

Few-Particle Effects in Nonlinear Optical Spectra of Semiconductor Quantum Dots

Published online by Cambridge University Press:  10 February 2011

Ulrich Hohenesteri
Affiliation:
Istituto Nazionale per la Fisica della Materia (INFM) E-mail: hohenester@unimo.it; FAX: +39 059 387488 Departimento di Fisica, Università di Modena, Via Campi 213/A, I-41100, Modena, Italy
Fausto Rossi
Affiliation:
Istituto Nazionale per la Fisica della Materia (INFM) Departimento di Fisica, Politecnico di Torino, C. Duca degli Abruzzi 24, I-10129, Torino, Italy
Elisa Molinari
Affiliation:
Istituto Nazionale per la Fisica della Materia (INFM) Departimento di Fisica, Università di Modena, Via Campi 213/A, I-41100, Modena, Italy
Get access

Abstract

We present a density-matrix approach for the description of nonequilibrium carrier dynamics in optically excited semiconductor quantum dots, that explicitly accounts for exciton-exciton as well as exciton-carrier interactions. Within this framework, we analyze few-particle effects in the optical spectra and provide a consistent description of additional peaks appearing at high photoexcitation density. We discuss possible applications of such optical nonlinearities in future coherent-control experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ashoori, R. C., Nature 379, 413 (1996): L. P. Kouwenhoven, et al, in Mesoscopic Electron Transport, edited by L. Sohn, et al, (Kluwer, Dordrecht, 1997), p. 105.10.1038/379413a0Google Scholar
2. Motohisa, J., Baumberg, J. J., Heberle, A. P., Allam, J., Solid-State Electronics 42, 1335 (1998); L. Landin, M. S. Miller, M. E. Pistol, C. E. Pryor, L. Samuelson, Science 280, 262 (1998); E. Dekel, D. Gershoni, E. Ehrenfreund, D. Spektor, J. M. Garcia, M. Petroff, Phys. Rev. Lett. 80, 4991 (1998); F. Vouillez, D. Y. Oberli, F. Lelarge, B. Dwir, and E. Kapon, Solid State Commun. 108, 945 (1998).10.1016/S0038-1101(98)00027-6Google Scholar
3. Heberle, A. P., Baumberg, J. J., Köhler, K., Phys. Rev. Lett. 75, 2598 (1995).10.1103/PhysRevLett.75.2598Google Scholar
4. Bonadeo, N. H., Erland, J., Gammon, D., Park, D., Katzer, D. S., Steel, D. G., Science 282, 1473 (1998).10.1126/science.282.5393.1473Google Scholar
5. Haug, H. and Koch, S. W., Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1993).10.1142/1977Google Scholar
6. Rossi, F., Semic. Sci. Technol. 13, 147 (1998).10.1088/0268-1242/13/2/001Google Scholar
7. Axt, V. M. and Mukamel, S., Rev. Mod. Phys. 70, 145 (1998); Th. Oestreich, K. Schoenhammer, and L. J. Sham, Phys. Rev. B 58, 12920 (1998).10.1103/RevModPhys.70.145Google Scholar
8. Hohenester, U. and Pötz, W., Phys. Rev. B 56, 13177 (1997).10.1103/PhysRevB.56.13177Google Scholar
9. Jacak, L., Hawrylak, P., and Wojs, A., Quantum Dots (Springer, Berlin, 1998).10.1007/978-3-642-72002-4Google Scholar
10. Rossi, F. and Molinari, E., Phys. Rev. Lett. 76, 3642 (1996); Phys. Rev. B 53, 16462 (1996).10.1103/PhysRevLett.76.3642Google Scholar
11. In our cylindrical QD the confinement energies due to the in-plane parabolic potential are for electrons, and for holes; with this choice, electron and hole wavefunctions have the same lateral extension. The quantum-well confinement along z is such that the intersubband splittings are much larger than . At zero magnetic field the n-th excited electron (hole) eigenstate is then n-fold degenerate. Material parameters for GaAs are used.Google Scholar
12. We also computed the optical response from the SBE. Indeed, we find the results expected within the simple Bloch-vector model [5]: practically all density can be removed for δø=18 0°, or NX can be doubled for δø=0°.Google Scholar